[1] |
Vo NV, Hartman RA, Patil PR, et al. Molecular mechanisms of biological aging in intervertebral discs[J]. J Orthop Res, 2016, 34(8):1289-1306.
|
[2] |
Gong CY, Zhang HH. Autophagy as a potential therapeutic target in intervertebral disc degeneration[J]. Life Sci, 2021, 273:119266.
|
[3] |
Yan C, Wang X, Xiang C, et al. Applications of functionalized hydrogels in the regeneration of the intervertebral disc[J]. Biomed Res Int, 2021, 2021:2818624.
|
[4] |
Näther P, Kersten JF, Kaden I, et al. Distribution patterns of degeneration of the lumbar spine in a cohort of 200 patients with an indication for lumbar MRI[J]. Int J Environ Res Public Health, 2022, 19(6):3721.
|
[5] |
Risbud MV, Shapiro IM. Role of cytokines in intervertebral disc degeneration: Pain and disc content[J]. Nat Rev Rheumatol, 2014, 10(1):44-56.
|
[6] |
Clarke LE, Richardson SM, Hoyland JA. Harnessing the potential of mesenchymal stem cells for IVD regeneration[J]. Curr Stem Cell Res Ther, 2015, 10(4):296-306.
|
[7] |
Galano A, Tan DX, Reiter RJ. On the free radical scavenging activities of melatonin's metabolites, AFMK and AMK[J]. J Pineal Res, 2013, 54(3): 245-57.
|
[8] |
Khan ZA, Hong PJ, Lee CH, et al. Recent advances in electrochemical and optical sensors for detecting tryptophan and melatonin[J]. Int J Nanomedicine, 2021, 16:6861-6888.
|
[9] |
Podichetty VK. The aging spine: The role of inflammatory mediators in intervertebral disc degeneration[J]. Cell Mol Biol (Noisy-le-grand), 2007, 53(5):4-18.
|
[10] |
Cheng Z, Xiang Q, Wang J, et al. The potential role of melatonin in retarding intervertebral disc ageing and degeneration: A systematic review[J]. Ageing Res Rev, 2021, 70:101394.
|
[11] |
Studer RK, Gilbertson LG, Georgescu H, et al. p38 MAPK inhibition modulates rabbit nucleus pulposus cell response to IL-1[J]. J Orthop Res, 2008, 26(7):991-998.
|
[12] |
Fang F, Jiang D. IL-1β/HMGB1 signalling promotes the inflammatory cytokines release via TLR signalling in human intervertebral disc cells[J]. Biosci Rep, 2016, 36(5):e00379.
|
[13] |
Le Maitre CL, Hoyland JA, Freemont AJ. Catabolic cytokine expression in degenerate and herniated human intervertebral discs: IL-1beta and TNFalpha expression profile[J]. Arthritis Res Ther, 2007, 9(4):R77.
|
[14] |
Zhang G, Liao Y, Yang H, et al. IIrigenin reduces the expression of caspase-3 and matrix metalloproteinases, thus suppressing apoptosis and extracellular matrix degradation in TNF-α-stimulated nucleus pulposus cells[J]. Chem Biol Interact, 2021, 349:109681.
|
[15] |
Wang C, Yu X, Yan Y, et al. Tumor necrosis factor-alpha: A key contributor to intervertebral disc degeneration[J]. Acta Biochim Biophys Sin (Shanghai), 2017. 49(1):1-13.
|
[16] |
Zhang GZ, Liu MQ, Chen HW, et al. NF-κB signalling pathways in nucleus pulposus cell function and intervertebral disc degeneration[J]. Cell Prolif, 2021, 54(7):e13057.
|
[17] |
Gabr MA, Jing L, Helbling AR, et al. Interleukin-17 synergizes with IFNgamma or TNFalpha to promote inflammatory mediator release and intercellular adhesion molecule-1 (ICAM-1) expression in human intervertebral disc cells[J]. J Orthop Res, 2011, 29(1):1-7.
|
[18] |
Risbud MV, Shapiro IM. Role of cytokines in intervertebral disc degeneration: Pain and disc content[J]. Nat Rev Rheumatol, 2014, 10(1):44-56.
|
[19] |
Hardeland R. Aging, Melatonin, and the pro- and anti-inflammatory networks[J]. Int J Mol Sci, 2019, 20(5):1223.
|
[20] |
Tian Y, Ji Y, Mei X, et al. Lower plasma melatonin in the intervertebral disk degeneration patients was associated with increased proinflammatory cytokines[J]. Clin Interv Aging, 2021, 16:215-224.
|
[21] |
Chen F, Jiang G, Liu H, et al. Melatonin alleviates intervertebral disc degeneration by disrupting the IL-1β/NF-κB-NLRP3 inflammasome positive feedback loop[J]. Bone Res, 2020, 8:10.
|
[22] |
Chen F, Jiang G, Liu H, et al. Melatonin alleviates intervertebral disc degeneration by disrupting the IL-1β/NF-B-NLRP3 inflammasome positive feedback loop[J]. Bone Res, 2020, 8:10.
|
[23] |
Chao-Yang G, Peng C, Hai-Hong Z. Roles of NLRP3 inflammasome in intervertebral disc degeneration[J]. Osteoarthritis Cartilage, 2021, 29(6):793-801.
|
[24] |
Huang Y, Peng Y, Sun J, et al. Nicotinamide phosphoribosyl transferase controls NLRP3 inflammasome activity through MAPK and NF-kappaB signaling in nucleus pulposus cells, as suppressed by melatownin[J]. Inflammation, 2020, 43(3):796-809.
|
[25] |
Wei B, Zhao Y, Li W, et al. Innovative immune mechanisms and antioxidative therapies of intervertebral disc degeneration[J]. Front Bioeng Biotechnol, 2022, 10:1023877.
|
[26] |
Ye W, Xu K, Huang D, et al. Age-related increases of macroautophagy and chaperone-mediated autophagy in rat nucleus pulposus[J]. Connect Tissue Res, 2011, 52(6):472-478.
|
[27] |
Xu K, Chen W, Wang X, et al. Autophagy attenuates the catabolic effect during inflammatory conditions in nucleus pulposus cells, as sustained by NF-kappaB and JNK inhibition[J]. Int J Mol Med, 2015, 36(3):661-668.
|
[28] |
Park EY, Park JB. High glucose-induced oxidative stress promotes autophagy through mitochondrial damage in rat notochordal cells[J]. Int Orthop, 2013, 37(12):2507-2514.
|
[29] |
Fernández A, Ordóñez R, Reiter RJ, et al. Melatonin and endoplasmic reticulum stress: Relation to autophagy and apoptosis[J]. J Pineal Res, 2015, 59(3):292-307.
|
[30] |
Mehrzadi S, Pourhanifeh MH, Mirzaei A, et al. An updated review of mechanistic potentials of melatonin against cancer: Pivotal roles in angiogenesis, apoptosis, autophagy, endoplasmic reticulum stress and oxidative stress[J]. Cancer Cell Int, 2021, 21(1):188.
|
[31] |
Li J, Wang C, Xue L, et al. Melatonin suppresses apoptosis of nucleus pulposus cells through inhibiting autophagy via the PI3K/Akt pathway in a high-glucose culture[J]. Biomed Res Int, 2021, 2021:4604258.
|
[32] |
Chen F, Liu H, Wang X, et al. Melatonin activates autophagy via the NF-kappaB signaling pathway to prevent extracellular matrix degeneration in intervertebral disc[J]. Osteoarthritis Cartilage, 2020, 28(8):1121-1132.
|
[33] |
Guo J, Shao M, Lu F, et al. Role of Sirt1 plays in nucleus pulposus cells and intervertebral disc degeneration[J]. Spine (Phila Pa 1976), 2017, 42(13):E757-E766.
|
[34] |
Zhang Z, Lin J, Tian N, et al. Melatonin protects vertebral endplate chondrocytes against apoptosis and calcification via the Sirt1-autophagy pathway[J]. J Cell Mol Med, 2019, 23(1):177-193.
|
[35] |
Feng C, Yang M, Lan M, et al. ROS: Crucial intermediators in the pathogenesis of intervertebral disc degeneration[J]. Oxid Med Cell Longev, 2017, 2017:5601593.
|
[36] |
He R, Cui M, Lin H, et al. Melatonin resists oxidative stress-induced apoptosis in nucleus pulposus cells[J]. Life Sci, 2018, 199:122-130.
|
[37] |
Ponnappan S, Ponnappan U. Aging and immune function: Molecular mechanisms to interventions[J]. Antioxid Redox Signal, 2011, 14(8):1551-1585.
|
[38] |
Dimozi A, Mavrogonatou E, Sklirou A, et al. Oxidative stress inhibits the proliferation, induces premature senescence and promotes a catabolic phenotype in human nucleus pulposus intervertebral disc cells[J]. Eur Cell Mater, 2015, 30:89-102.
|
[39] |
Sun K, Sun X, Sun J, et al. Tissue renin-angiotensin system (tRAS) induce intervertebral disc degeneration by activating oxidative stress and inflammatory reaction[J]. Oxid Med Cell Longev, 2021, 2021:3225439.
|
[40] |
Tan DX, Hardeland R, Manchester LC, et al. The changing biological roles of melatonin during evolution: From an antioxidant to signals of darkness, sexual selection and fitness[J]. Biol Rev Camb Philos Soc, 2010, 85(3):607-623.
|
[41] |
Reiter RJ, Tan DX, Terron MP, et al. Melatonin and its metabolites: New findings regarding their production and their radical scavenging actions[J]. Acta Biochim Pol, 2007, 54(1):1-9.
|
[42] |
Reiter RJ, Tan DX, Rosales-Corral S, et al. Mitochondria: Central organelles for melatonin’s antioxidant and anti-aging actions[J]. Molecules, 2018, 23(2):509.
|
[43] |
Huang Y, Peng Y, Sun J, et al. Nicotinamide phosphoribosyl transferase controls NLRP3 inflammasome activity through MAPK and NF-κB signaling in nucleus pulposus cells, as suppressed by melatonin[J]. Inflammation, 2020, 43(3):796-809.
|
[44] |
Chen Y, Wu Y, Shi H, et al. Melatonin ameliorates intervertebral disc degeneration via the potential mechanisms of mitophagy induction and apoptosis inhibition[J]. J Cell Mol Med, 2019, 23(3): 2136-2148.
|
[45] |
Krut Z, Pelled G, Gazit D, et al. Stem cells and exosomes: New therapies for intervertebral disc degeneration[J]. Cells, 2021, 10(9):2241.
|
[46] |
Le Maitre CL, Pockert A, Buttle DJ, et al. Matrix synthesis and degradation in human intervertebral disc degeneration[J]. Biochem Soc Trans, 2007, 35(Pt 4):652-655.
|
[47] |
Wagner DR, Reiser KM, Lotz JC. Glycation increases human annulus fibrosus stiffness in both experimental measurements and theoretical predictions[J]. J Biomech, 2006, 39(6):1021-1029.
|
[48] |
Vo NV, Hartman RA, Yurube T, et al. Expression and regulation of metalloproteinases and their inhibitors in intervertebral disc aging and degeneration[J]. Spine J, 2013, 13(3):331-341.
|
[49] |
Kobayashi Y, Sakai D, Iwashina T, et al. Low-intensity pulsed ultrasound stimulates cell proliferation, proteoglycan synthesis and expression of growth factor-related genes in human nucleus pulposus cell line[J]. Eur Cell Mater, 2009, 17:15-22.
|
[50] |
Li Z, Li X, Chen C, et al. Melatonin inhibits nucleus pulposus (NP) cell proliferation and extracellular matrix (ECM) remodeling via the melatonin membrane receptors mediated PI3K-Akt pathway[J]. J Pineal Res, 2017, 63(3). doi: 10.1111/jpi.12435.
|
[51] |
Shen C, Li Y, Chen Y, et al. Melatonin prevents the binding of vascular endothelial growth factor to its receptor and promotes the expression of extracellular matrix-associated genes in nucleus pulposus cells[J]. Exp Ther Med, 2020, 20(5):106.
|
[52] |
Wang F, Cai F, Shi R, et al. Aging and age related stresses: A senescence mechanism of intervertebral disc degeneration[J]. Osteoarthritis Cartilage, 2016, 24(3):398-408.
|
[53] |
Martins DE, Medeiros VP, Wajchenberg M, et al. Changes in human intervertebral disc biochemical composition and bony end plates between middle and old age[J/OL]. PLoS One, 2018, 13(9):e0203932.
|
[54] |
Pratsinis H, Constantinou V, Pavlakis K, et al. Exogenous and autocrine growth factors stimulate human intervertebral disc cell proliferation via the ERK and Akt pathways[J]. J Orthop Res, 2012, 30(6):958-964.
|
[55] |
Guo S, Cui L, Xiao C, et al. The mechanisms and functions of GDF-5 in intervertebral disc degeneration[J]. Orthop Surg, 2021, 13(3):734-741.
|
[56] |
Mariotti V, Fiorotto R, Cadamuro M, et al. New insights on the role of vascular endothelial growth factor in biliary pathophysiology[J]. JHEP Rep, 2021, 3(3):100251.
|
[57] |
Zhang TW, Li ZF, Ding W, et al. Decorin inhibits nucleus pulposus apoptosis by matrix-induced autophagy via the mTOR pathway[J]. J Orthop Res, 2021, 39(8):1777-1788.
|
[58] |
Alpantaki K, Kampouroglou A, Koutserimpas C, et al. Diabetes mellitus as a risk factor for intervertebral disc degeneration: A critical review[J]. Eur Spine J, 2019, 28(9):2129-2144.
|
[59] |
Novais EJ, Diekman BO, Shapiro IM, et al. p16Ink4a deletion in cells of the intervertebral disc affects their matrix homeostasis and senescence associated secretory phenotype without altering onset of senescence[J]. Matrix Biol, 2019, 82:54-70.
|
[60] |
Che H, Li J, Li Y, et al. p16 deficiency attenuates intervertebral disc degeneration by adjusting oxidative stress and nucleus pulposus cell cycle[J]. Elife, 2020, 9:e52570.
|
[61] |
Ngo K, Patil P, McGowan SJ, et al. Senescent intervertebral disc cells exhibit perturbed matrix homeostasis phenotype[J]. Mech Ageing Dev, 2017, 166:16-23.
|
[62] |
廖军,谢巧瑜,张乐,等.电针对颈椎病模型大鼠椎间盘纤维环细胞Wnt-β-catenin信号通路的影响[J].中国针灸,2014,34(12):1203-1207.
|
[63] |
Ge J, Zhou Q, Niu J, et al. Melatonin protects intervertebral disc from degeneration by improving cell survival and function via activation of the ERK1/2 signaling pathway[J]. Oxid Med Cell Longev, 2019, 2019:5120275.
|
[64] |
Zhang Y, He F, Chen Z, et al. Melatonin modulates IL-1β-induced extracellular matrix remodeling in human nucleus pulposus cells and attenuates rat intervertebral disc degeneration and inflammation[J]. Aging (Albany NY), 2019, 11(22):10499-10512.
|