切换至 "中华医学电子期刊资源库"

中华老年病研究电子杂志 ›› 2021, Vol. 08 ›› Issue (02) : 45 -49. doi: 10.3877/cma.j.issn.2095-8757.2021.02.008

肌少症

抗阻运动和镁元素防治肌少症的研究进展
顾欣悦1, 王世敏2, 潘斌冰3, 李盛村4,()   
  1. 1. 310003 杭州,浙江省中医院
    2. 323800 丽水市庆元县中医院
    3. 325600 乐清市第二人民医院
    4. 325027 温州医科大学附属第二医院
  • 收稿日期:2021-01-05 出版日期:2021-05-28
  • 通信作者: 李盛村
  • 基金资助:
    国家自然科学基金项目(81802243); 国家大学生创新创业训练计划项目(201710352006)

Research progress of resistance exercise and magnesium in the prevention and treatment of sarcopenia

Xinyue Gu1, Shimin Wang2, Binbing Pan3, Shengcun Li4,()   

  1. 1. Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou 310003, China
    2. Qingyuan Hospital of traditional Chinese Medicine, Qingyuan 323800, China
    3. The Second People's Hospital of Yueqing, Yueqing 325600, China
    4. The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
  • Received:2021-01-05 Published:2021-05-28
  • Corresponding author: Shengcun Li
引用本文:

顾欣悦, 王世敏, 潘斌冰, 李盛村. 抗阻运动和镁元素防治肌少症的研究进展[J]. 中华老年病研究电子杂志, 2021, 08(02): 45-49.

Xinyue Gu, Shimin Wang, Binbing Pan, Shengcun Li. Research progress of resistance exercise and magnesium in the prevention and treatment of sarcopenia[J]. Chinese Journal of Geriatrics Research(Electronic Edition), 2021, 08(02): 45-49.

肌少症与老年人衰弱、跌倒和身体机能下降关系密切。增龄、久卧制动及运动不足是肌少症发生的主要因素。运动锻炼,尤其是抗阻运动是防治肌少症的重要康复手段。抗阻运动通过mTOR等途径促进肌肉生长,防止肌肉质量下降。营养不良是肌少症发生的另一个重要原因,而微量元素是重要的营养因子。近年研究发现,微量元素中的镁与肌肉功能密切相关,补充镁有助于维持肌肉力量和质量,增强运动表现,从而预防老年人肌少症的发生。因此,运动结合补充镁的方式有望成为防治肌少症的康复新策略。

Sarcopenia is closely related to frailty, fall and decline of body function in the elderly. The main factors of sarcopenia are aging, long-term immobilization and lack of movement. Exercise, especially resistance training, is an important rehabilitation method for the prevention of sarcopenia. Resistance exercise promotes muscle growth and prevents muscle quality decline through mTOR pathway. Malnutrition is another important cause of sarcopenia, and trace elements are important nutritional factors. Recent studies have found that magnesium in trace elements is closely related to muscle function. Supplementation of magnesium can help maintain muscle strength and quality, enhance exercise performance and prevent sarcopenia in the elderly. Therefore, exercise combined with magnesium supplementation is expected to become a new rehabilitation strategy for the prevention and treatment of sarcopenia.

[1]
Bauer JM. Sarcopenia and frailty 2016 : Going separate ways[J]. Z Gerontol Geriatr, 2016, 49(7):565-566.
[2]
Dalle S, Rossmeislova L, Koppo K. The role of inflammation in age-related sarcopenia[J]. Front Physiol, 2017, 8:1045-1046.
[3]
Koo BK, Kim D, Joo SK, et al. Sarcopenia is an independent risk factor for non-alcoholic steatohepatitis and significant fibrosis[J]. J Hepatol, 2017, 66(1):123-131.
[4]
He H, Liu Y, Tian Q, et al. Relationship of sarcopenia and body composition with osteoporosis[J]. Osteoporos Int, 2016, 27(2):473-482.
[5]
Gadelha AB, Neri S, Nóbrega OT, et al. Muscle quality is associated with dynamic balance, fear of falling, and falls in older women[J]. Exp Gerontol, 2018, 104:1-6.
[6]
Heffernan SM, Horner K, De Vito G, et al. The role of mineral and trace element supplementation in exercise and athletic performance: A systematic review[J]. Nutrients, 2019, 11(3):696.
[7]
Ebner N, Elsner S, Springer J, et al. Molecular mechanisms and treatment targets of muscle wasting and cachexia in heart failure: an overview[J]. Curr Opin Support Palliat Care, 2014, 8(1):15-24.
[8]
Chen LK, Woo J, Assantachai P, et al. Asian working group for sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment[J]. J Am Med Dir Assoc, 2020, 21(3):300-307.
[10]
Chiu SC, Yang RS, Yang RJ, et al. Effects of resistance training on body composition and functional capacity among sarcopenic obese residents in long-term care facilities: A preliminary study[J]. BMC Geriatr, 2018, 18(1):21-32.
[11]
Gianoudis J, Bailey CA, Daly RM. Associations between sedentary behaviour and body composition, muscle function and sarcopenia in community-dwelling older adults[J]. Osteoporos Int, 2015, 26(2):571-579.
[12]
Westbury LD, Dodds RM, Syddall HE, et al. Associations between objectively measured physical activity, body composition and sarcopenia: findings from the sertfordshire sarcopenia study (HSS)[J]. Calcif Tissue Int, 2018, 103(3):237-245.
[13]
Ryan AS, Ivey FM, Serra MC, et al. Sarcopenia and physical function in middle-aged and older stroke survivors[J]. Arch Phys Med Rehabil, 2017, 98(3):495-499.
[14]
Yeh DD, Ortiz-Reyes LA, Quraishi SA, et al. Early nutritional inadequacy is associated with psoas muscle deterioration and worse clinical outcomes in critically ill surgical patients[J]. J Crit Care, 2018, 45:7-13.
[15]
Lauretani F, Meschi T, Ticinesi A, et al. "Brain-muscle loop" in the fragility of older persons: From pathophysiology to new organizing models[J]. Aging Clin Exp Res, 2017, 29(6):1305-1311.
[16]
Gianoudis J, Bailey CA, Daly RM. Associations between sedentary behaviour and body composition, muscle function and sarcopenia in community-dwelling older adults[J]. Osteoporos Int, 2015, 26(2):571-579.
[17]
Bull FC, Al-Ansari SS, Biddle S, et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour[J]. Br J Sports Med, 2020, 54(24):1451-1462.
[18]
Makanae Y, Fujita S. Role of exercise and nutrition in the prevention of sarcopenia[J]. J Nutr Sci Vitaminol (Tokyo), 2015, 61 (Supplement):S125-S127.
[19]
Lee SY, Tung HH, Liu CY, et al. Physical activity and sarcopenia in the geriatric population: A systematic review[J]. J Am Med Dir Assoc, 2018, 19(5):378-383.
[20]
陈姝,盛云露,齐婷,等.强化营养联合抗阻运动对老年肌少症患者躯体功能和日常生活能力的影响[J].护理学杂志,2017,32(21):8-10.
[21]
Vahlberg B, Lindmark B, Zetterberg L, et al. Body composition and physical function after progressive resistance and balance training among older adults after stroke: An exploratory randomized controlled trial[J]. Disabil Rehabil, 2016, 39(12):1207-1214.
[22]
Trouwborst I, Verreijen A, Memelink R, et al. Exercise and nutrition strategies to counteract sarcopenic obesity[J]. Nutrients, 2018, 10(5):605-626.
[23]
Snijders T, Nederveen JP, Joanisse S, et al. Muscle fibre capillarization is a critical factor in muscle fibre hypertrophy during resistance exercise training in older men[J]. J Cachexia Sarcopenia Muscle, 2017, 8(2):267-276.
[24]
Ziaaldini MM, Marzetti E, Picca A, et al. Biochemical pathways of sarcopenia and their modulation by physical exercise: A narrative review[J]. Front Med, 2017, 4:167-175.
[25]
Mitchell WK, Phillips BE, Hill I, et al. Human skeletal muscle is refractory to the anabolic effects of leucine during the postprandial muscle-full period in older men[J]. Clin Sci, 2017, 131(21):2643-2653.
[26]
Tromm CB, Pozzi BG, Paganini CS, et al. The role of continuous versus fractionated physical training on muscle oxidative stress parameters and calcium-handling proteins in aged rats[J]. Aging Clin Exp Res, 2016, 28(5):833-841.
[27]
Fyfe JJ, Bishop DJ, Bartlett JD, et al. Enhanced skeletal muscle ribosome biogenesis, yet attenuated mTORC1 and ribosome biogenesis-related signalling, following short-term concurrent versus single-mode resistance training[J]. Sci Rep, 2018, 8(1):560-581.
[28]
Rasmus K, Munk-Hansen N, Birk JB, et al. Enhanced muscle insulin sensitivity after contraction/exercise is mediated by AMPK[J]. Diabetes, 2017, 66(3):598-612.
[29]
Han EY, Im SH. Effects of a 6-week aquatic treadmill exercise program on cardiorespiratory fitness and walking endurance in subacute stroke patients: A pilot trial[J]. J Cardiopulm Rehabil Prev, 2018, 38(5):314-319.
[30]
Blumenthal JB, Gitterman A, Ryan AS, et al. Effects of exercise training and weight loss on plasma fetuin-a levels and insulin sensitivity in overweight older men[J]. J Diabetes Res, 2017, 2017:1492581.
[31]
Villareal DT, Aguirre L, Gurney AB, et al. Aerobic or resistance exercise, or both, in dieting obese older adults[J]. N Engl J Med, 2017, 376(20):1943-1955.
[32]
Bales CW, L.Locher J, Soltzman E. Handbook of Clinical Nutrition and Aging[M]. 3rd. New Jersey: Humana Press, 2015:35-53.
[33]
Macdonell SO, Miller JC, Waters DL, et al. Dietary patterns in the frail elderly[J]. Curr Nutr Rep, 2016, 5(1):1-8.
[34]
Cermak NM, Res PT, Groot LCD, et al. Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: A meta-analysis[J]. Am J Clin Nutr, 2012, 96:1454-1464.
[35]
Liao CD, Tsauo JY, Wu YT, et al. Effects of protein supplementation combined with resistance exercise on body composition and physical function in older adults: A systematic review and meta-analysis[J]. Am J Clin Nutr, 2017, 106(4):1078-1091.
[36]
Weisgarber KD, Candow DG, Farthing JP. Whey protein and high-volume resistance training in postmenopausal women[J]. J Nutr Health Aging, 2015, 19(5):511-517.
[37]
Borg ST, Lisette CG, Mijnarends DM, et al. Differences in nutrient intake and biochemical nutrient status between sarcopenic and nonsarcopenic older adults-results fromthe maastricht sarcopenia study[J]. J Am Med Dir Assoc, 2016, 17(5):393-401.
[38]
Verlaan S, Aspray TJ, Bauer JM, et al. Nutritional status, body composition, and quality of life in community-dwelling sarcopenic and non-sarcopenic older adults: A case-control study[J]. Clin Nutr, 2017, 36(1):267-274.
[39]
Dronkelaar CV, Velzen AV, Abdelrazek M, et al. Minerals and sarcopenia: The role of calcium, iron, magnesium, phosphorus, potassium, selenium, sodium, and zinc on muscle mass, muscle strength, and physical performance in older adults: a systematic review[J]. J Am Med Dir Assoc, 2018, 19(1):6-11.
[40]
Rpg H, Mah L, Mulligan AA, et al. Cross-sectional associations of dietary and circulating magnesium with skeletal muscle mass in the EPIC-Norfolk cohort[J]. Clin Nutr, 2018, 38(1):317-323.
[41]
Welch AA, Kelaiditi E, Jennings A, et al. Dietary magnesium is positively associated with skeletal muscle power and indices of muscle mass and may attenuate the association between circulating c-reactive protein and muscle mass in women [J]. J Bone Mineral Res, 2016, 31(2):317-325.
[42]
Mason M. Effects of transdermal magnesium chloride on muscle damage and force production after eccentric exercise[D]. America North Carolina, UNC Chapel Hill, 2017:1-38
[43]
Moslehi N, Vafa M, Sarrafzadeh J, et al. Does magnesium supplementation improve body composition and muscle strength in middle-aged overweight women? A double-blind, placebo-controlled, randomized clinical trial[J]. Biol Trace Elem Res, 2013, 153(1-3):111-118.
[44]
Zhang Y, Xun P, Wang R, et al. Can magnesium enhance exercise performance[J]. Nutrients, 2017, 9(9):946-956.
[45]
Veronese N, Berton L, Carraro S, et al. Effect of oral magnesium supplementation on physical performance in healthy elderly women involved in a weekly exercise program: A randomized controlled trial[J]. Am J Clin Nutr, 2014, 100(3):974-981.
[46]
Chen HY, Cheng FC, Pan HC, et al. Magnesium enhances exercise performance via increasing glucose availability in the blood, muscle, and brain during exercise[J]. PLoS One, 2014, 9(1):e85486-e85488.
[47]
Setaro L, Santossilva PR, Nakano EY, et al. Magnesium status and the physical performance of volleyball players: effects of magnesium supplementation[J]. J Sports Sci, 2014, 32(5):438-445.
[48]
Welch AA, Skinner J, Hickson M. Dietary magnesium may be protective for aging of bone and skeletal muscle in middle and younger older age men and women: Cross-sectional findings from the UK biobank cohort[J]. Nutrients, 2017, 9(11):1189-1190.
[1] 符卓毅, 唐圣成, 卜俏梅, 徐高兵, 吴安平, 蔡巍, 杨明, 谭海涛. 镁在骨关节炎治疗中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 354-362.
[2] 杨霁, 黄顺梅, 王安鸽, 吴月, 杨云梅. 杭州地区老年人群中肌少症患病情况及其与骨质疏松症的相关性分析[J]. 中华危重症医学杂志(电子版), 2023, 16(03): 207-210.
[3] 汤文倩, 徐向阳, 王松, 刘淑华. 运动康复在严重烧伤中的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(02): 169-173.
[4] 张瑜, 王志宏, 董毳, 由莲莲, 刘书馨. 血镁水平对维持性血液透析患者死亡率影响的单中心研究[J]. 中华肾病研究电子杂志, 2021, 10(06): 306-310.
[5] 王宁, 刘彦哲, 吴紫莺, 曾超, 雷光华, 沙婷婷, 王伊伦. 基于孟德尔随机化研究探讨肠道菌群与肌少症表型的因果关联[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 333-342.
[6] 侯传勇, 刘新晖, 殷建. PFNA与DHS治疗Seinsheimer V型股骨粗隆下骨折合并肌少症的疗效比较[J]. 中华老年骨科与康复电子杂志, 2021, 07(05): 277-283.
[7] 孔绘敏, 王秀勤, 梁海. 硫酸镁钠钾口服液与复方聚乙二醇电解质散对患者肠道清洁的对比研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(04): 259-261.
[8] 王家圆, 王晓东. 消化系统恶性肿瘤相关肌少症的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(07): 823-827.
[9] 张小芬, 张权. 苗药防感香囊活性提取物对聚肌胞苷酸刺激的支气管上皮细胞IFN-α、IL-6水平的影响及机制[J]. 中华临床医师杂志(电子版), 2021, 15(04): 272-279.
[10] 李蕾, 柳娟, 陆悦. 血清维生素D水平对维持性血液透析患者下肢肌力减退的预测作用[J]. 中华诊断学电子杂志, 2022, 10(03): 197-201.
[11] 陈佳惟, 李泽云, 肖勒, 陈建文, 梁计陵, 周靖涛. 中国老年人肌少症患病率和影响因素的Meta分析[J]. 中华老年病研究电子杂志, 2022, 09(04): 40-45.
[12] 郑玲燕, 杨奕, 钟沈菁, 陈月华, 张焕青, 马敬, 俞蔚. 运动康复对老年人体位性低血压的干预效果[J]. 中华老年病研究电子杂志, 2022, 09(03): 21-24.
[13] 胡奕卿, 黄钰晨, 罗璐, 方继伟, 刘焕兵. 肌少症评估对中老年急性胰腺炎患者的临床预测价值[J]. 中华老年病研究电子杂志, 2022, 09(03): 1-5.
[14] 陶有娣, 黄雄昂, 林坚, 汤洋. 太极拳锻炼对老年慢性肾脏病并发肌少症患者的功能改善作用[J]. 中华老年病研究电子杂志, 2022, 09(02): 18-21.
[15] 胡奕卿, 刘焕兵. 老年人肠道菌群与肌少症[J]. 中华老年病研究电子杂志, 2022, 09(02): 9-12.
阅读次数
全文


摘要