[1] |
中华医学会骨质疏松和骨矿盐疾病分会.肌少症共识[J].中华骨质疏松和骨矿盐疾病杂志,2016,9(3):215-227.
|
[2] |
Rosenberg IH. Sarcopenia: Origins and clinical relevance[J]. Clin Geriatr Med, 2011, 27(3):337-339.
|
[3] |
钟静,王秀华.老年人肌少症非药物干预的研究进展[J].中国护理管理,2019,19(8):1256-1262.
|
[4] |
Dam TT, Peters KW, Fragala M, et al. An evidence-based comparison of operational criteria for the presence of sarcopenia[J]. J Gerontol A Biol Sci Med Sci, 2014, 69(5):584-590.
|
[5] |
Studenski SA, Peters KW, Alley DE, et al. The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates[J]. J Gerontol A Biol Sci Med Sci, 2014, 69(5): 547-558.
|
[6] |
Chen L, Liu LK, Woo J, et al, Sarcopenia in Asia: Consensus Report of the Asian Working Group for sarcopenia[J]. J Am Med Dir Assoc, 2014, 15(2):95-101.
|
[7] |
Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: Revised European consensus on definition and diagnosis[J]. Age Ageing, 2019, 48(1):16-31.
|
[8] |
Chen LK, Woo J, Assantachai P, et al. Asian Working Group for sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment[J]. J Am Med Dir Assoc, 2020, 21(3):300-307.e2.
|
[9] |
Baumgartner RN, Koehler KM, Gallagher D, et al. Epidemiology of sarcopenia among the elderly in New Mexico[J]. Am J Epidemiol, 1998, 147(8):755-763.
|
[10] |
Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People[J]. Age Ageing, 2010, 39(4):412-423.
|
[11] |
于宝海,吴文娟.2018欧洲肌少症共识解读[J]. 河北医科大学学报,2019,40(4):373-379.
|
[12] |
Nijholt W, Beek LT, Hobbelen JSM, et al. The added value of ultrasound muscle measurements in patients with COPD: An exploratory study[J]. Clin Nutr ESPEN, 2019, 30:152-158.
|
[13] |
Bauer J, Morley JE, Schols AMWJ, et al. Sarcopenia: A time for action. An SCWD position paper[J]. J Cachexia Sarcopenia Muscle, 2019, 10(5):956-961.
|
[14] |
薛瑜,王鸥,邢小平.肌少症筛查工具[J].中华骨质疏松和骨矿盐疾病杂志,2017,10(5):483-490.
|
[15] |
Naseeb MA, Volpe SL. Protein and exercise in the prevention of sarcopenia and aging[J]. Nutr Res, 2017, 40:1-20.
|
[16] |
Martone AM, Marzetti E, Calvani R, et al. Exercise and protein intake: A synergistic approach against sarcopenia[J]. BioMed Res Int, 2017, 2017:1-7.
|
[17] |
Par SS, Seo Y, Kwon K. Sarcopenia targeting with autophagy mechanism by exercise[J]. BMB Rep, 2019, 52(1):64-69.
|
[18] |
Zampieri S, Pietrangelo L, Loefler S, et al. Lifelong physical exercise delays age-associated skeletal muscle decline[J]. J Gerontol Biol Sci Med Sci, 2015, 70(2):163-173.
|
[19] |
Chen HT, Chung YC, Chen YJ, et al. Effects of different types of exercise on body composition, muscle strength, and IGF-1 in the elderly with sarcopenic obesity[J]. J Am Geriatr Soc, 2017, 65(4):827-832.
|
[20] |
Fragala MS, Fukuda DH, Stout JR, et al. Muscle quality index improves with resistance exercise training in older adults[J]. Exp Gerontol, 2014, 53:1-6.
|
[21] |
Crane JD, MacNeil LG, Tarnopolsky MA. Long-term aerobic exercise is associated with greater muscle strength throughout the life span[J]. J Gerontol Biol Sci Med Sci, 2013, 68(6):631-638.
|
[22] |
Zhu Y, Peng N, Zhou M, et al. Tai Chi and whole-body vibrating therapy in sarcopenic men in advanced old age: A clinical randomized controlled trial[J]. Eur J Ageing, 2019, 16(3):273-282.
|
[23] |
杨则宜,焦颖,魏冰,等.老年肌肉减少症防治中的营养干预[J].中国食品学报,2019,19(9):1-12.
|
[24] |
Aleman-Mateo H, Gallegos Aguilar AC, Ramirez Carreon V, et al. Nutrient-rich dairy proteins improve appendicular skeletal muscle mass and physical performance, and attenuate the loss of muscle strength in older men and women subjects: A single-blind randomized clinical trial[J]. Clin Int Aging, 2014, 9:1517-1525.
|
[25] |
Tieland M, van de Rest O, Dirks ML, et al. Protein supplementation improves physical performance in frail elderly people: A randomized, double-blind, placebo-controlled trial[J]. J Am Med Dir Assoc, 2012, 13(8):720-726.
|
[26] |
龙囡囡,吴玉泉.肌少症的认识及其研究进展[J].中华保健医学杂志,2018,20(5):447-450.
|
[27] |
Agergaard J, Trøstrup J, Uth J, et al. Does vitamin-D intake during resistance training improve the skeletal muscle hypertrophic and strength response in young and elderly men? - a randomized controlled trial[J]. Nutr Metab (Lond), 2015, 12:32.
|
[28] |
Rodacki CL, Rodacki AL, Pereira G, et al. Fish-oil supplementation enhances the effects of strength training in elderly women[J]. Am J Clin Nutr, 2012, 95(2):428-436.
|
[29] |
Tieland M, Dirks ML, van der Zwaluw N, et al. Protein supplementation increases muscle mass gain during prolonged resistance-type exercise training in frail elderly people: A randomized, double-blind, placebo-controlled trial[J]. J Am Med Dir Assoc, 2012, 13(8):713-719.
|
[30] |
Kim H, Kim M, Kojima N, et al. Exercise and nutritional supplementation on community-dwelling elderly Japanese women with sarcopenic obesity: A randomized controlled trial[J]. J Am Med Dir Assoc, 2016, 17(11):1011-1019.
|
[31] |
Da Boit M, Sibson R, Sivasubramaniam S, et al. Sex differences in the effect of fish-oil supplementation on the adaptive response to resistance exercise training in older people: A randomized controlled trial[J]. Am J Clin Nutr, 2017, 105(1):151-158.
|
[32] |
Saad F, Röhrig G, von Haehling S, et al. Testosterone deficiency and testosterone treatment in older men[J]. Gerontology, 2017, 63(2):144-156.
|
[33] |
Garvey WT, Mechanick JI, Brett EM, et al. American association of clinical endocrinologists and american college of endocrinology comprehensive clinical practice guidelines for medical care of patients with obesity American association of clinical endocrinologists and American college of endocrinology comprehensive clinical practice guidelines for medical care of patients with obesity[J]. Endocr Pract, 2016, 22(3):1-203.
|
[34] |
Bhasin S, Cunningham GR, Hayes FJ, et al. Testosterone therapy in adult men with androgen deficiency syndromes: An endocrine society clinical practice guideline[J]. J Clin Endocrinol Metab, 2010, 91(6):2536-2559.
|
[35] |
Villareal DT, Apovian CM, Kushner RF, et al. Obesity in older adults: Technical review and position statement of the American Society for Nutrition and NAASO, The Obesity Society[J]. Am J Clin Nutr, 2005, 82(5):923-934.
|
[36] |
Papanicolaou DA, Ather SN, Zhu H, et al. A phase IIA randomized, placebo-controlled clinical trial to study the efficacy and safety of the selective androgen receptor modulator (SARM), MK-0773 in female participants with sarcopenia[J]. J Nutr Health Aging, 2013, 17(6):533-543.
|
[37] |
Dubois V, Laurent M, Boonen S, et al. Androgens and skeletal muscle: cellular and molecular action mechanisms underlying the anabolic actions[J]. Cellul Molecul Life Sci, 2012, 69(10):1651-1667.
|
[38] |
Batsis JA, Villareal DT. Sarcopenic obesity in older adults: Aetiology, epidemiology and treatment strategies[J]. Nat Rev Endocrinol, 2018, 14(9):513-537.
|
[39] |
Bartke A. Growth hormone and aging: Updated review[J]. World J Men's Health, 2019, 37(1):19.
|
[40] |
Tamaki M, Miyashita K, Hagiwara A, et al. Ghrelin treatment improves physical decline in sarcopenia model mice through muscular enhancement and mitochondrial activation[J]. Endocrine J, 2017, 64(Suppl):S47-S51.
|
[41] |
Garcia JM, Polvino WJ. Pharmacodynamic hormonal effects of anamorelin, a novel oral ghrelin mimetic and growth hormone secretagogue in healthy volunteers[J]. Growth Horm IGF Res, 2009, 19(3):267-273.
|
[42] |
Garcia JM, Polvino WJ. Effect on body weight and safety of RC-1291, a novel, orally available ghrelin mimetic and growth hormone secretagogue: Results of a phase I, randomized, placebo-controlled, multiple-dose study in healthy volunteers[J]. Oncologist, 2007, 12(5):594-600.
|
[43] |
Koshinaka K, Toshinai K, Mohammad A, et al. Therapeutic potential of ghrelin treatment for unloading-induced muscle atrophy in mice[J]. Biochem Biophys Res Commun, 2011, 412(2):296-301.
|
[44] |
Nishie K, Yamamoto S, Nagata C, et al. Anamorelin for advanced non-small-cell lung cancer with cachexia: Systematic review and meta-analysis[J]. Lung Cancer, 2017, 112:25-34.
|
[45] |
Gonçalves DA, Silveira WA, Manfredi LH, et al. Navegantes, Insulin/IGF1 signalling mediates the effects of β2-adrenergic agonist on muscle proteostasis and growth[J]. J Cachexia Sarcopenia Muscle, 2019, 10(2):455-475.
|
[46] |
Hostrup M, Reitelseder S, Jessen S, et al. Beta2-adrenoceptor agonist salbutamol increases protein turnover rates and alters signalling in skeletal muscle after resistance exercise in young men[J]. J Physiol, 2018, 596(17):4121-4139.
|
[47] |
Conte TC, Silva LH, Silva MT, et al. The 2-adrenoceptor agonist formoterol improves structural and functional regenerative capacity of skeletal muscles from aged rat at the early stages of postinjury[J]. J Gerontol Biol Sci Med Sci, 2012, 67A(5):443-455.
|
[48] |
Toledo M, Springer J, Busquets S, et al. Formoterol in the treatment of experimental cancer cachexia: Effects on heart function[J]. J Cachexia Sarcopenia Muscle, 2014, 5(4):315-320.
|
[49] |
McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-fl superfamily member[J]. Nature, 1997, 387(6628):83-90.
|
[50] |
Bergen HR, Farr JN, Vanderboom PM, et al. Myostatin as a mediator of sarcopenia versus homeostatic regulator of muscle mass: Insights using a new mass spectrometry-based assay[J]. Skeletal Muscle, 2015, 5:21.
|
[51] |
White TA, LeBrasseur NK. Myostatin and sarcopenia: Opportunities and challenges - a mini-review[J]. Gerontology, 2014, 60(4):289-293.
|
[52] |
Camporez JG, Petersen MC, Abudukadier A, et al. Anti-myostatin antibody increases muscle mass and strength and improves insulin sensitivity in old mice[J]. Proc Natl Acad Sci, 2016, 113(8):2212-2217.
|
[53] |
Dong J, Dong Y, Dong Y, et al. Inhibition of myostatin in mice improves insulin sensitivity via irisin-mediated cross talk between muscle and adipose tissues[J]. Int J Obes (Lond), 2016, 40(3):434-442.
|
[54] |
Santos AR, Lamas L, Ugrinowitsch C, et al. Different resistance-training regimens evoked a similar increase in myostatin inhibitors expression[J]. Int J Sports med, 2015. 36(9):761-768.
|
[55] |
Becker C, Lord SR, Studenski SA, et al. Myostatin antibody (LY2495655) in older weak fallers: A proof-of-concept, randomised, phase 2 trial[J]. Lancet Diabetes Endocrinol, 2015, 3(12):948-957.
|
[56] |
Collins-Hooper H, Sartori R, Macharia R, et al. Propeptide-mediated inhibition of myostatin increases muscle mass through inhibiting proteolytic pathways in aged mice[J]. J Gerontol Biol Sci Med Sci, 2014, 69(9):1049-1059.
|
[57] |
Azuma K, Inoue S. Multiple modes of vitamin k actions in aging-related musculoskeletal disorders[J]. Int J Mol Sci, 2019, 20(11):2844.
|
[58] |
Shea MK, Loeser RF, Hsu F, et al. Vitamin K status and lower extremity function in older adults: The health aging and body composition study[J]. J Gerontol Biol Sci Med Sci, 2016, 71(10):1348-1355.
|
[59] |
Shea MK, Dawson-Hughes B, Gundberg CM, et al. Reducing undercarboxylated osteocalcin with vitamin K supplementation does not promote lean tissue loss or fat gain over 3 years in older women and men: A randomized controlled trial[J]. J Bone Mineral Res, 2017, 32(2):243-249.
|
[60] |
Fulton RL, McMurdo MET, Hill A, et al. Effect of vitamin K on vascular health and physical function in older people with vascular disease-a randomised controlled trial[J]. J Nutr Health Aging, 2016, 20(3):325-333.
|
[61] |
Liguori I, Russo G, Aran L, et al. Sarcopenia: Assessment of disease burden and strategies to improve outcomes[J]. Clin Interv Aging, 2018, 13:913-927.
|
[62] |
Morley JE. Pharmacologic options for the treatment of sarcopenia[J]. Calcif Tissue Int, 2016, 98(4):319-333.
|
[63] |
Sumukadas D, Witham MD, Struthers AD, et al. Effect of perindopril on physical function in elderly people with functional impairment: A randomized controlled trial[J]. CMAJ, 2007, 177(8):867-874.
|
[64] |
Molfino A, Amabile MI, Rossi Fanelli F, et al. Novel therapeutic options for cachexia and sarcopenia[J]. Expert Opin Biol Ther, 2016, 16(10):1239-1244.
|
[65] |
Naranjo JD, Dziki JL, Badylak SF. Regenerative medicine approaches for age-related muscle loss and sarcopenia: A mini-review[J]. Gerontology, 2017, 63(6):580-589.
|
[66] |
Barberi L, Scicchitano BM, De Rossi M, et al. Age-dependent alteration in muscle regeneration: The critical role of tissue niche[J]. Biogerontology, 2013, 14(3):273-292.
|
[67] |
Valenzuela PL, Castillo-García A, Morales JS, et al. Physical exercise in the oldest old[J]. Compr Physiol, 2019, 9(4):1281-1304.
|
[68] |
Grutter Lopes K, Bottino DA, Farinatti P, et al. Strength training with blood flow restriction - a novel therapeutic approach for older adults with sarcopenia? A case report[J]. Clin Interv Aging, 2019, 14:1461-1469.
|
[69] |
Yasuda T, Fukumura K, Uchida Y, et al. Effects of low-load, elastic band resistance training combined with blood flow restriction on muscle size and arterial stiffness in older adults[J]. J Gerontol Biol Sci Med Sci, 2015, 70(8):950-958.
|
[70] |
Yasuda T, Fukumura K, Fukuda T, et al. Muscle size and arterial stiffness after blood flow-restricted low-intensity resistance training in older adults[J]. Scand J Med Sci Sports, 2014, 24(5):799-806.
|
[71] |
Centner C, Zdzieblik D, Roberts L, et al. Effects of Blood flow restriction training with protein supplementation on muscle mass and strength in older men[J]. J Sports Sci Med, 2019, 18(3):471-478.
|
[72] |
O'Connor D, Brennan L, Caulfield B. The use of neuromuscular electrical stimulation (NMES) for managing the complications of ageing related to reduced exercise participation[J]. Maturitas, 2018, 113:13-20.
|
[73] |
Trethewey SP, Brown N, Gao F, et al. Interventions for the management and prevention of sarcopenia in the critically ill: A systematic review[J]. J Crit Care, 2019, 50:287-295.
|
[74] |
Paillard T. Muscle plasticity of aged subjects in response to electrical stimulation training and inversion and/or limitation of the sarcopenic process[J]. Ageing Res Rev, 2018, 46:1-13.
|
[75] |
Dirks ML, Groen BBL, Franssen R, et al. Neuromuscular electrical stimulation prior to presleep protein feeding stimulates the use of protein-derived amino acids for overnight muscle protein synthesis[J]. J Appl Physiol, 2017, 122(1):20-27.
|
[76] |
Watanabe K, Yoshida T, Ishikawa T, et al. Effect of the combination of whole-body neuromuscular electrical stimulation and voluntary exercise on metabolic responses in human[J]. Front Physiol, 2019, 10:291.
|
[77] |
Yoshikawa M, Morifuji T, Matsumoto T, et al. Effects of combined treatment with blood flow restriction and low current electrical stimulation on muscle hypertrophy in rats[J]. J Appl Physiol (1985), 2019, 127(5):1288-1296.
|
[78] |
Rogan S, Radlinger L, Hilfiker R, et al. Feasibility and effects of applying stochastic resonance whole-body vibration on untrained elderly: A randomized crossover pilot study[J]. BMC Geriatrics, 2015, 15:25.
|
[79] |
Rogan S, Hilfiker R, Herren K,et al. Effects of whole-body vibration on postural control in elderly: A systematic review and metaanalysis[J]. BMC Geriatr, 2011, 11:72.
|
[80] |
Verschueren SM, Bogaerts A, Delecluse C, et al. The effects of whole-body vibration training and vitamin D supplementation on muscle strength, muscle mass, and bone density in institutionalized elderly women: A 6-month randomized, controlled trial[J]. J Bone Mineral Res, 2011, 26(1):42-49.
|
[81] |
Cardim AB, Marinho PE, Nascimento JJF, et al. Does whole-body vibration improve the functional exercise capacity of subjects with COPD? A meta-analysis[J]. Respir Care, 2016, 61(11):1552-1559.
|
[82] |
Lau RW, Liao L, Yu F, et al. The effects of whole body vibration therapy on bone mineral density and leg muscle strength in older adults: A systematic review and meta-analysis[J]. Cli Rehabil, 2011, 25(11):975-988.
|
[83] |
Rogan S, Taeymans J, Radlinger L, et al. Effects of whole-body vibration on postural control in elderly: An update of a systematic review and meta-analysis[J]. Arch Gerontol Geriatr, 2017, 73:95-112.
|
[84] |
Bemben DA, Palmer IJ, Bemben MG, et al. Effects of combined whole-body vibration and resistance training on muscular strength and bone metabolism in postmenopausal women[J]. Bone, 2010, 47(3):650-656.
|
[85] |
Gutierrez-Casado E, Khraiwesh H, Lopez-Dominguez JA, et al. The impact of aging, calorie restriction and dietary fat on autophagy markers and mitochondrial ultrastructure and dynamics in mouse skeletal muscle[J]. J Gerontol Biol Sci Med Sci, 2019, 74(6):760-769.
|
[86] |
Sakuma K, Yamaguchi A. Recent advances in pharmacological, hormonal, and nutritional intervention for sarcopenia[J]. Pflügers Arch, 2018, 470(3):449-460.
|
[87] |
Marzetti E, Anne Lees H, Eva Wohlgemuth S, et al. Sarcopenia of aging: Underlying cellular mechanisms and protection by calorie restriction[J]. BioFactors, 2009, 35(1):28-35.
|
[88] |
Wohlgemuth SE, Seo AY, Marzetti E, et al. Skeletal muscle autophagy and apoptosis during aging: Effects of calorie restriction and life-long exercise[J]. Exp Gerontol, 2010, 45(2):138-148.
|
[89] |
McKiernan S, Bua E, McGorray J, et al. Early-onset calorie restriction conserves fiber number in aging rat skeletal muscle[J]. FASEB J, 2004, 18(3):580-581.
|