切换至 "中华医学电子期刊资源库"

中华老年病研究电子杂志 ›› 2021, Vol. 08 ›› Issue (02) : 35 -44. doi: 10.3877/cma.j.issn.2095-8757.2021.02.007

肌少症

肌少症的诊治新进展
许群1, 徐哲荣1,()   
  1. 1. 310003 杭州,浙江大学医学院附属第一医院老年医学科
  • 收稿日期:2020-11-09 出版日期:2021-05-28
  • 通信作者: 徐哲荣
  • 基金资助:
    国家自然科学基金项目(81771497)

New progress in diagnosis and treatment of sarcopenia

Qun Xu1, Zherong Xu1,()   

  1. 1. Department of Geriatrics, the First Affiliated Hospital, Zhejiang University School, Hangzhou 310003, China
  • Received:2020-11-09 Published:2021-05-28
  • Corresponding author: Zherong Xu
引用本文:

许群, 徐哲荣. 肌少症的诊治新进展[J]. 中华老年病研究电子杂志, 2021, 08(02): 35-44.

Qun Xu, Zherong Xu. New progress in diagnosis and treatment of sarcopenia[J]. Chinese Journal of Geriatrics Research(Electronic Edition), 2021, 08(02): 35-44.

老年肌少症是一种随增龄而逐渐丧失肌肉并导致肌力和运动功能下降的疾病。越来越多的研究表明,肌少症是导致老年人出现不良结果的主要危险因素。因此,早期识别诊断并及时给予有效干预是维持老年人机体功能、减少或者推迟负面健康相关事件、保障老年人生活质量的关键。本文回顾近十多年来关于肌少症的相关文献,重点综述其诊断和治疗的新进展,以期为临床进一步了解肌少症并早期诊断及实施个体化综合治疗提供帮助。

Sarcopenia is a disease with the gradual loss of muscle and resulting in decreased muscle strength and motor function. More and more studies have shown that sarcopenia is a major risk factor for adverse outcomes in the elderly. Therefore, early identification and diagnosis and timely effective interventions are the key to maintain the body function, reducing or postponing negative health-related events, and ensure the quality of life of the elderly. This article reviews the relevant literature on sarcopenia in the past decade and focuses on the new progress in diagnosis and treatment of sarcopenia, in order to provide help for further understanding and early diagnosis and implementation of individualized comprehensive treatment of sarcopenia.

图1 2018年欧洲老年人肌少症工作组肌少症评估流程图
表1 不同标准按性别划分的肌少症操作性定义概述
表2 可用于临床和科研的肌少症病例筛查、肌量和体能测量的诊断工具
[1]
中华医学会骨质疏松和骨矿盐疾病分会.肌少症共识[J].中华骨质疏松和骨矿盐疾病杂志,2016,9(3):215-227.
[2]
Rosenberg IH. Sarcopenia: Origins and clinical relevance[J]. Clin Geriatr Med, 2011, 27(3):337-339.
[3]
钟静,王秀华.老年人肌少症非药物干预的研究进展[J].中国护理管理,2019,19(8):1256-1262.
[4]
Dam TT, Peters KW, Fragala M, et al. An evidence-based comparison of operational criteria for the presence of sarcopenia[J]. J Gerontol A Biol Sci Med Sci, 2014, 69(5):584-590.
[5]
Studenski SA, Peters KW, Alley DE, et al. The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates[J]. J Gerontol A Biol Sci Med Sci, 2014, 69(5): 547-558.
[6]
Chen L, Liu LK, Woo J, et al, Sarcopenia in Asia: Consensus Report of the Asian Working Group for sarcopenia[J]. J Am Med Dir Assoc, 2014, 15(2):95-101.
[7]
Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: Revised European consensus on definition and diagnosis[J]. Age Ageing, 2019, 48(1):16-31.
[8]
Chen LK, Woo J, Assantachai P, et al. Asian Working Group for sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment[J]. J Am Med Dir Assoc, 2020, 21(3):300-307.e2.
[9]
Baumgartner RN, Koehler KM, Gallagher D, et al. Epidemiology of sarcopenia among the elderly in New Mexico[J]. Am J Epidemiol, 1998, 147(8):755-763.
[10]
Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People[J]. Age Ageing, 2010, 39(4):412-423.
[11]
于宝海,吴文娟.2018欧洲肌少症共识解读[J]. 河北医科大学学报,2019,40(4):373-379.
[12]
Nijholt W, Beek LT, Hobbelen JSM, et al. The added value of ultrasound muscle measurements in patients with COPD: An exploratory study[J]. Clin Nutr ESPEN, 2019, 30:152-158.
[13]
Bauer J, Morley JE, Schols AMWJ, et al. Sarcopenia: A time for action. An SCWD position paper[J]. J Cachexia Sarcopenia Muscle, 2019, 10(5):956-961.
[14]
薛瑜,王鸥,邢小平.肌少症筛查工具[J].中华骨质疏松和骨矿盐疾病杂志,2017,10(5):483-490.
[15]
Naseeb MA, Volpe SL. Protein and exercise in the prevention of sarcopenia and aging[J]. Nutr Res, 2017, 40:1-20.
[16]
Martone AM, Marzetti E, Calvani R, et al. Exercise and protein intake: A synergistic approach against sarcopenia[J]. BioMed Res Int, 2017, 2017:1-7.
[17]
Par SS, Seo Y, Kwon K. Sarcopenia targeting with autophagy mechanism by exercise[J]. BMB Rep, 2019, 52(1):64-69.
[18]
Zampieri S, Pietrangelo L, Loefler S, et al. Lifelong physical exercise delays age-associated skeletal muscle decline[J]. J Gerontol Biol Sci Med Sci, 2015, 70(2):163-173.
[19]
Chen HT, Chung YC, Chen YJ, et al. Effects of different types of exercise on body composition, muscle strength, and IGF-1 in the elderly with sarcopenic obesity[J]. J Am Geriatr Soc, 2017, 65(4):827-832.
[20]
Fragala MS, Fukuda DH, Stout JR, et al. Muscle quality index improves with resistance exercise training in older adults[J]. Exp Gerontol, 2014, 53:1-6.
[21]
Crane JD, MacNeil LG, Tarnopolsky MA. Long-term aerobic exercise is associated with greater muscle strength throughout the life span[J]. J Gerontol Biol Sci Med Sci, 2013, 68(6):631-638.
[22]
Zhu Y, Peng N, Zhou M, et al. Tai Chi and whole-body vibrating therapy in sarcopenic men in advanced old age: A clinical randomized controlled trial[J]. Eur J Ageing, 2019, 16(3):273-282.
[23]
杨则宜,焦颖,魏冰,等.老年肌肉减少症防治中的营养干预[J].中国食品学报,2019,19(9):1-12.
[24]
Aleman-Mateo H, Gallegos Aguilar AC, Ramirez Carreon V, et al. Nutrient-rich dairy proteins improve appendicular skeletal muscle mass and physical performance, and attenuate the loss of muscle strength in older men and women subjects: A single-blind randomized clinical trial[J]. Clin Int Aging, 2014, 9:1517-1525.
[25]
Tieland M, van de Rest O, Dirks ML, et al. Protein supplementation improves physical performance in frail elderly people: A randomized, double-blind, placebo-controlled trial[J]. J Am Med Dir Assoc, 2012, 13(8):720-726.
[26]
龙囡囡,吴玉泉.肌少症的认识及其研究进展[J].中华保健医学杂志,2018,20(5):447-450.
[27]
Agergaard J, Trøstrup J, Uth J, et al. Does vitamin-D intake during resistance training improve the skeletal muscle hypertrophic and strength response in young and elderly men? - a randomized controlled trial[J]. Nutr Metab (Lond), 2015, 12:32.
[28]
Rodacki CL, Rodacki AL, Pereira G, et al. Fish-oil supplementation enhances the effects of strength training in elderly women[J]. Am J Clin Nutr, 2012, 95(2):428-436.
[29]
Tieland M, Dirks ML, van der Zwaluw N, et al. Protein supplementation increases muscle mass gain during prolonged resistance-type exercise training in frail elderly people: A randomized, double-blind, placebo-controlled trial[J]. J Am Med Dir Assoc, 2012, 13(8):713-719.
[30]
Kim H, Kim M, Kojima N, et al. Exercise and nutritional supplementation on community-dwelling elderly Japanese women with sarcopenic obesity: A randomized controlled trial[J]. J Am Med Dir Assoc, 2016, 17(11):1011-1019.
[31]
Da Boit M, Sibson R, Sivasubramaniam S, et al. Sex differences in the effect of fish-oil supplementation on the adaptive response to resistance exercise training in older people: A randomized controlled trial[J]. Am J Clin Nutr, 2017, 105(1):151-158.
[32]
Saad F, Röhrig G, von Haehling S, et al. Testosterone deficiency and testosterone treatment in older men[J]. Gerontology, 2017, 63(2):144-156.
[33]
Garvey WT, Mechanick JI, Brett EM, et al. American association of clinical endocrinologists and american college of endocrinology comprehensive clinical practice guidelines for medical care of patients with obesity American association of clinical endocrinologists and American college of endocrinology comprehensive clinical practice guidelines for medical care of patients with obesity[J]. Endocr Pract, 2016, 22(3):1-203.
[34]
Bhasin S, Cunningham GR, Hayes FJ, et al. Testosterone therapy in adult men with androgen deficiency syndromes: An endocrine society clinical practice guideline[J]. J Clin Endocrinol Metab, 2010, 91(6):2536-2559.
[35]
Villareal DT, Apovian CM, Kushner RF, et al. Obesity in older adults: Technical review and position statement of the American Society for Nutrition and NAASO, The Obesity Society[J]. Am J Clin Nutr, 2005, 82(5):923-934.
[36]
Papanicolaou DA, Ather SN, Zhu H, et al. A phase IIA randomized, placebo-controlled clinical trial to study the efficacy and safety of the selective androgen receptor modulator (SARM), MK-0773 in female participants with sarcopenia[J]. J Nutr Health Aging, 2013, 17(6):533-543.
[37]
Dubois V, Laurent M, Boonen S, et al. Androgens and skeletal muscle: cellular and molecular action mechanisms underlying the anabolic actions[J]. Cellul Molecul Life Sci, 2012, 69(10):1651-1667.
[38]
Batsis JA, Villareal DT. Sarcopenic obesity in older adults: Aetiology, epidemiology and treatment strategies[J]. Nat Rev Endocrinol, 2018, 14(9):513-537.
[39]
Bartke A. Growth hormone and aging: Updated review[J]. World J Men's Health, 2019, 37(1):19.
[40]
Tamaki M, Miyashita K, Hagiwara A, et al. Ghrelin treatment improves physical decline in sarcopenia model mice through muscular enhancement and mitochondrial activation[J]. Endocrine J, 2017, 64(Suppl):S47-S51.
[41]
Garcia JM, Polvino WJ. Pharmacodynamic hormonal effects of anamorelin, a novel oral ghrelin mimetic and growth hormone secretagogue in healthy volunteers[J]. Growth Horm IGF Res, 2009, 19(3):267-273.
[42]
Garcia JM, Polvino WJ. Effect on body weight and safety of RC-1291, a novel, orally available ghrelin mimetic and growth hormone secretagogue: Results of a phase I, randomized, placebo-controlled, multiple-dose study in healthy volunteers[J]. Oncologist, 2007, 12(5):594-600.
[43]
Koshinaka K, Toshinai K, Mohammad A, et al. Therapeutic potential of ghrelin treatment for unloading-induced muscle atrophy in mice[J]. Biochem Biophys Res Commun, 2011, 412(2):296-301.
[44]
Nishie K, Yamamoto S, Nagata C, et al. Anamorelin for advanced non-small-cell lung cancer with cachexia: Systematic review and meta-analysis[J]. Lung Cancer, 2017, 112:25-34.
[45]
Gonçalves DA, Silveira WA, Manfredi LH, et al. Navegantes, Insulin/IGF1 signalling mediates the effects of β2-adrenergic agonist on muscle proteostasis and growth[J]. J Cachexia Sarcopenia Muscle, 2019, 10(2):455-475.
[46]
Hostrup M, Reitelseder S, Jessen S, et al. Beta2-adrenoceptor agonist salbutamol increases protein turnover rates and alters signalling in skeletal muscle after resistance exercise in young men[J]. J Physiol, 2018, 596(17):4121-4139.
[47]
Conte TC, Silva LH, Silva MT, et al. The 2-adrenoceptor agonist formoterol improves structural and functional regenerative capacity of skeletal muscles from aged rat at the early stages of postinjury[J]. J Gerontol Biol Sci Med Sci, 2012, 67A(5):443-455.
[48]
Toledo M, Springer J, Busquets S, et al. Formoterol in the treatment of experimental cancer cachexia: Effects on heart function[J]. J Cachexia Sarcopenia Muscle, 2014, 5(4):315-320.
[49]
McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-fl superfamily member[J]. Nature, 1997, 387(6628):83-90.
[50]
Bergen HR, Farr JN, Vanderboom PM, et al. Myostatin as a mediator of sarcopenia versus homeostatic regulator of muscle mass: Insights using a new mass spectrometry-based assay[J]. Skeletal Muscle, 2015, 5:21.
[51]
White TA, LeBrasseur NK. Myostatin and sarcopenia: Opportunities and challenges - a mini-review[J]. Gerontology, 2014, 60(4):289-293.
[52]
Camporez JG, Petersen MC, Abudukadier A, et al. Anti-myostatin antibody increases muscle mass and strength and improves insulin sensitivity in old mice[J]. Proc Natl Acad Sci, 2016, 113(8):2212-2217.
[53]
Dong J, Dong Y, Dong Y, et al. Inhibition of myostatin in mice improves insulin sensitivity via irisin-mediated cross talk between muscle and adipose tissues[J]. Int J Obes (Lond), 2016, 40(3):434-442.
[54]
Santos AR, Lamas L, Ugrinowitsch C, et al. Different resistance-training regimens evoked a similar increase in myostatin inhibitors expression[J]. Int J Sports med, 2015. 36(9):761-768.
[55]
Becker C, Lord SR, Studenski SA, et al. Myostatin antibody (LY2495655) in older weak fallers: A proof-of-concept, randomised, phase 2 trial[J]. Lancet Diabetes Endocrinol, 2015, 3(12):948-957.
[56]
Collins-Hooper H, Sartori R, Macharia R, et al. Propeptide-mediated inhibition of myostatin increases muscle mass through inhibiting proteolytic pathways in aged mice[J]. J Gerontol Biol Sci Med Sci, 2014, 69(9):1049-1059.
[57]
Azuma K, Inoue S. Multiple modes of vitamin k actions in aging-related musculoskeletal disorders[J]. Int J Mol Sci, 2019, 20(11):2844.
[58]
Shea MK, Loeser RF, Hsu F, et al. Vitamin K status and lower extremity function in older adults: The health aging and body composition study[J]. J Gerontol Biol Sci Med Sci, 2016, 71(10):1348-1355.
[59]
Shea MK, Dawson-Hughes B, Gundberg CM, et al. Reducing undercarboxylated osteocalcin with vitamin K supplementation does not promote lean tissue loss or fat gain over 3 years in older women and men: A randomized controlled trial[J]. J Bone Mineral Res, 2017, 32(2):243-249.
[60]
Fulton RL, McMurdo MET, Hill A, et al. Effect of vitamin K on vascular health and physical function in older people with vascular disease-a randomised controlled trial[J]. J Nutr Health Aging, 2016, 20(3):325-333.
[61]
Liguori I, Russo G, Aran L, et al. Sarcopenia: Assessment of disease burden and strategies to improve outcomes[J]. Clin Interv Aging, 2018, 13:913-927.
[62]
Morley JE. Pharmacologic options for the treatment of sarcopenia[J]. Calcif Tissue Int, 2016, 98(4):319-333.
[63]
Sumukadas D, Witham MD, Struthers AD, et al. Effect of perindopril on physical function in elderly people with functional impairment: A randomized controlled trial[J]. CMAJ, 2007, 177(8):867-874.
[64]
Molfino A, Amabile MI, Rossi Fanelli F, et al. Novel therapeutic options for cachexia and sarcopenia[J]. Expert Opin Biol Ther, 2016, 16(10):1239-1244.
[65]
Naranjo JD, Dziki JL, Badylak SF. Regenerative medicine approaches for age-related muscle loss and sarcopenia: A mini-review[J]. Gerontology, 2017, 63(6):580-589.
[66]
Barberi L, Scicchitano BM, De Rossi M, et al. Age-dependent alteration in muscle regeneration: The critical role of tissue niche[J]. Biogerontology, 2013, 14(3):273-292.
[67]
Valenzuela PL, Castillo-García A, Morales JS, et al. Physical exercise in the oldest old[J]. Compr Physiol, 2019, 9(4):1281-1304.
[68]
Grutter Lopes K, Bottino DA, Farinatti P, et al. Strength training with blood flow restriction - a novel therapeutic approach for older adults with sarcopenia? A case report[J]. Clin Interv Aging, 2019, 14:1461-1469.
[69]
Yasuda T, Fukumura K, Uchida Y, et al. Effects of low-load, elastic band resistance training combined with blood flow restriction on muscle size and arterial stiffness in older adults[J]. J Gerontol Biol Sci Med Sci, 2015, 70(8):950-958.
[70]
Yasuda T, Fukumura K, Fukuda T, et al. Muscle size and arterial stiffness after blood flow-restricted low-intensity resistance training in older adults[J]. Scand J Med Sci Sports, 2014, 24(5):799-806.
[71]
Centner C, Zdzieblik D, Roberts L, et al. Effects of Blood flow restriction training with protein supplementation on muscle mass and strength in older men[J]. J Sports Sci Med, 2019, 18(3):471-478.
[72]
O'Connor D, Brennan L, Caulfield B. The use of neuromuscular electrical stimulation (NMES) for managing the complications of ageing related to reduced exercise participation[J]. Maturitas, 2018, 113:13-20.
[73]
Trethewey SP, Brown N, Gao F, et al. Interventions for the management and prevention of sarcopenia in the critically ill: A systematic review[J]. J Crit Care, 2019, 50:287-295.
[74]
Paillard T. Muscle plasticity of aged subjects in response to electrical stimulation training and inversion and/or limitation of the sarcopenic process[J]. Ageing Res Rev, 2018, 46:1-13.
[75]
Dirks ML, Groen BBL, Franssen R, et al. Neuromuscular electrical stimulation prior to presleep protein feeding stimulates the use of protein-derived amino acids for overnight muscle protein synthesis[J]. J Appl Physiol, 2017, 122(1):20-27.
[76]
Watanabe K, Yoshida T, Ishikawa T, et al. Effect of the combination of whole-body neuromuscular electrical stimulation and voluntary exercise on metabolic responses in human[J]. Front Physiol, 2019, 10:291.
[77]
Yoshikawa M, Morifuji T, Matsumoto T, et al. Effects of combined treatment with blood flow restriction and low current electrical stimulation on muscle hypertrophy in rats[J]. J Appl Physiol (1985), 2019, 127(5):1288-1296.
[78]
Rogan S, Radlinger L, Hilfiker R, et al. Feasibility and effects of applying stochastic resonance whole-body vibration on untrained elderly: A randomized crossover pilot study[J]. BMC Geriatrics, 2015, 15:25.
[79]
Rogan S, Hilfiker R, Herren K,et al. Effects of whole-body vibration on postural control in elderly: A systematic review and metaanalysis[J]. BMC Geriatr, 2011, 11:72.
[80]
Verschueren SM, Bogaerts A, Delecluse C, et al. The effects of whole-body vibration training and vitamin D supplementation on muscle strength, muscle mass, and bone density in institutionalized elderly women: A 6-month randomized, controlled trial[J]. J Bone Mineral Res, 2011, 26(1):42-49.
[81]
Cardim AB, Marinho PE, Nascimento JJF, et al. Does whole-body vibration improve the functional exercise capacity of subjects with COPD? A meta-analysis[J]. Respir Care, 2016, 61(11):1552-1559.
[82]
Lau RW, Liao L, Yu F, et al. The effects of whole body vibration therapy on bone mineral density and leg muscle strength in older adults: A systematic review and meta-analysis[J]. Cli Rehabil, 2011, 25(11):975-988.
[83]
Rogan S, Taeymans J, Radlinger L, et al. Effects of whole-body vibration on postural control in elderly: An update of a systematic review and meta-analysis[J]. Arch Gerontol Geriatr, 2017, 73:95-112.
[84]
Bemben DA, Palmer IJ, Bemben MG, et al. Effects of combined whole-body vibration and resistance training on muscular strength and bone metabolism in postmenopausal women[J]. Bone, 2010, 47(3):650-656.
[85]
Gutierrez-Casado E, Khraiwesh H, Lopez-Dominguez JA, et al. The impact of aging, calorie restriction and dietary fat on autophagy markers and mitochondrial ultrastructure and dynamics in mouse skeletal muscle[J]. J Gerontol Biol Sci Med Sci, 2019, 74(6):760-769.
[86]
Sakuma K, Yamaguchi A. Recent advances in pharmacological, hormonal, and nutritional intervention for sarcopenia[J]. Pflügers Arch, 2018, 470(3):449-460.
[87]
Marzetti E, Anne Lees H, Eva Wohlgemuth S, et al. Sarcopenia of aging: Underlying cellular mechanisms and protection by calorie restriction[J]. BioFactors, 2009, 35(1):28-35.
[88]
Wohlgemuth SE, Seo AY, Marzetti E, et al. Skeletal muscle autophagy and apoptosis during aging: Effects of calorie restriction and life-long exercise[J]. Exp Gerontol, 2010, 45(2):138-148.
[89]
McKiernan S, Bua E, McGorray J, et al. Early-onset calorie restriction conserves fiber number in aging rat skeletal muscle[J]. FASEB J, 2004, 18(3):580-581.
[1] 杨水华, 何桂丹, 覃桂灿, 梁蒙凤, 罗艳合, 李雪芹, 唐娟松. 胎儿孤立性完全型肺静脉异位引流的超声心动图特征及高分辨率血流联合时间-空间相关成像的应用[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1061-1067.
[2] 彭旭, 邵永孚, 李铎, 邹瑞, 邢贞明. 结肠肝曲癌的诊断和外科治疗[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 108-110.
[3] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[4] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
[5] 张海涛, 康婵娟, 翟静洁. 胰管支架置入治疗急性胆源性胰腺炎效果观察[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 654-657.
[6] 杨雪, 张伟, 尚培中, 宋创业, 尚丹丹, 张蔚. 胆囊十二指肠瘘结石经瘘口排出后自愈一例报道[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 707-708.
[7] 杨瑞洲, 李国栋, 吴向阳. 腹股沟疝术后感染的治疗方法探讨[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 715-719.
[8] 王宁, 刘彦哲, 吴紫莺, 曾超, 雷光华, 沙婷婷, 王伊伦. 基于孟德尔随机化研究探讨肠道菌群与肌少症表型的因果关联[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 333-342.
[9] 袁媛, 赵良平, 刘智慧, 张丽萍, 谭丽梅, 閤梦琴. 子宫内膜癌组织中miR-25-3p、PTEN的表达及与病理参数的关系[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1016-1020.
[10] 陆志峰, 周佳佳, 梁舒. 虚拟现实技术在治疗弱视中的临床应用研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 891-895.
[11] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[12] 岳瑞雪, 孔令欣, 郝鑫, 杨进强, 韩猛, 崔国忠, 王建军, 张志生, 孔凡庭, 张维, 何文博, 李现桥, 周新平, 徐东宏, 胡崇珠. 乳腺癌HER2蛋白表达水平预测新辅助治疗疗效的真实世界研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 765-770.
[13] 周婷, 孙培培, 张二明, 安欣华, 向平超. 北京市石景山区40岁及以上居民慢性阻塞性肺疾病诊断现状调查[J]. 中华临床医师杂志(电子版), 2023, 17(07): 790-797.
[14] 王家圆, 王晓东. 消化系统恶性肿瘤相关肌少症的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(07): 823-827.
[15] 符梅沙, 周玉华, 李慧, 薛春颜. 淋巴细胞免疫治疗对复发性流产患者外周血T淋巴细胞亚群分布与PD1/PD-L1表达的影响及意义[J]. 中华临床医师杂志(电子版), 2023, 17(06): 726-730.
阅读次数
全文


摘要