[1] |
许成燕,陈军香,王教明,等.中国人群膝骨关节炎危险因素的Meta分析[J].中国循证医学杂志,2021,21(7):772-778.
|
[2] |
张莹莹,李旭东,杨佳娟,等.中国40岁及以上人群骨关节炎患病率的Meta分析[J].中国循证医学杂志,2021,21(4):407-414.
|
[3] |
Vina ER, Kwoh CK. Epidemiology of osteoarthritis: Literature update[J]. Curr Opin Rheumatol, 2018, 30(2):160-167.
|
[4] |
申延清,刘风霞,曹红,等.膝骨关节炎患者的临床表现及相关影响因素[J].中国组织工程研究与临床康复,2011,15(9):1643-1646.
|
[5] |
Fittipaldi S, Visconti VV, Tarantino U, et al. Genetic variability in noncoding RNAs: Involvement of miRNAs and long noncoding RNAs in osteoporosis pathogenesis[J]. Epigenomics, 2020, 12(22):2035-2049.
|
[6] |
Sibley CR, Seow Y, Saayman S, et al. The biogenesis and characterization of mammalian miRs of mirtron origin[J]. Nucleic Acids Res, 2012, 40(1):438-448.
|
[7] |
Shvedova M, Kobayashi T. MiRs in cartilage development and dysplasia[J]. Bone, 2020, 140:115564.
|
[8] |
Barter MJ, Tselepi M, Gómez R, et al. Genome-wide miR and gene analysis of mesenchymal stem cell chondrogenesis identifies an essential role and multiple targets for miR-140-5p[J]. Stem Cells, 2015, 33(11):3266-3280.
|
[9] |
Tao SC, Yuan T, Zhang YL, et al. Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model[J]. Theranostics, 2017, 7(1):180-195.
|
[10] |
Yang J, Qin S, Yi C, et al. MiR-140 is co-expressed with Wwp2-C transcript and activated by Sox9 to target Sp1 in maintaining the chondrocyte proliferation[J]. FEBS Letters, 2011, 585(19):2992-2997.
|
[11] |
Chen W, Chen L, Zhang Z, et al. MiR-455-3p modulates cartilage development and degeneration through modification of histone H3 acetylation[J]. Biochim Biophys Acta, 2016, 1863(12):2881-2891.
|
[12] |
Sun H, Zhao X, Zhang C, et al. MiR-455-3p inhibits the degenerate process of chondrogenic differentiation through modification of DNA methylation[J]. Cell Death Dis, 2018, 9(5):537.
|
[13] |
Miyaki S, Sato T, Inoue A, et al. MiR-140 plays dual roles in both cartilage development and homeostasis[J]. Genes Dev, 2010, 24(11):1173-1185.
|
[14] |
Chen G, Gao X, Wang J, et al. Hypoxia-induced miR-146a represses Bcl-2 through Traf6/IRAK1 but not Smad4 to promote chondrocyte autophagy[J]. Biol Chem, 2017, 398(4):499-507.
|
[15] |
Zhang F, Wang J, Chu J, et al. MiR-146a induced by hypoxia promotes chondrocyte autophagy through Bcl-2[J]. Cell Physiol Biochem, 2015, 37(4):1442-1453.
|
[16] |
Liu JN, Lu S, Fu CM. MiR-146a expression profiles in osteoarthritis in different tissue sources: A meta-analysis of observational studies[J]. J Orthop Surg Res, 2022, 17:148.
|
[17] |
Zhang X, Wang C, Zhao J, et al. miR-146a facilitates osteoarthritis by regulating cartilage homeostasis via targeting Camk2d and Ppp3r2[J/OL]. Cell Death Dis, 2017, 8(4):e2734.
|
[18] |
Guan YJ, Li J, Yang X, et al. Evidence that miR-146a attenuates aging- and trauma-induced osteoarthritis by inhibiting Notch1, IL-6, and IL-1 mediated catabolism[J/OL]. Aging Cell, 2018, 17(3):e12752.
|
[19] |
Yan S, Wang M, Zhao J, et al. MiR-34a affects chondrocyte apoptosis and proliferation by targeting the SIRT1/p53 signaling pathway during the pathogenesis of osteoarthritis[J]. Int J Mol Med, 2016, 38(1):201-209.
|
[20] |
Zhang W, Hsu P, Zhong B, et al. MiR-34a enhances chondrocyte apoptosis, senescence and facilitates development of osteoarthritis by targeting DLL1 and regulating PI3K/AKT pathway[J]. Cell Physiol Biochem, 2018, 48(3):1304-1316.
|
[21] |
Philipot D, Guérit D, Platano D, et al. p16INK4a and its regulator miR-24 link senescence and chondrocyte terminal differentiation-associated matrix remodeling in osteoarthritis[J]. Arthritis Res Ther, 2014, 16(1):R58.
|
[22] |
Zhao X, Wang T, Cai B, et al. MiR-495 enhances chondrocyte apoptosis, senescence and promotes the progression of osteoarthritis by targeting AKT1[J]. Am J Transl Res, 2019, 11(4):2232-2244.
|
[23] |
Yang DW, Qian GB, Jiang MJ, et al. Inhibition of miR-495 suppresses chondrocyte apoptosis through activation of the NF-κB signaling pathway by regulating CCL4 in osteoarthritis[J]. Gene Ther, 2019, 26(6): 217-229.
|
[24] |
Lian WS, Ko JY, Wu RW, et al. MiR-128a represses chondrocyte autophagy and exacerbates knee osteoarthritis by disrupting Atg12[J]. Cell Death Dis, 2018, 9(9):919.
|
[25] |
Le LTT, Swingler TE, Crowe N, et al. The miR-29 family in cartilage homeostasis and osteoarthritis[J]. Mol Med (Berl), 2016, 94(5):583-596.
|
[26] |
Hu S, Zhao X, Mao G, et al. MiR-455-3p promotes TGF-β signaling and inhibits osteoarthritis development by directly targeting PAK2[J]. Exp Mol Med, 2019, 51(10):1-13.
|
[27] |
Anderson BA, McAlinden A. miR-483 targets SMAD4 to suppress chondrogenic differentiation of human mesenchymal stem cells[J]. J Orthop Res, 2017, 35(11):2369-2377.
|
[28] |
Wang H, Zhang H, Sun Q, et al. Chondrocyte mTORC1 activation stimulates miR-483-5p via HDAC4 in osteoarthritis progression[J]. J Cell Physiol, 2019, 234(3):2730-2740.
|
[29] |
Cong L, Zhu Y, Tu G. A bioinformatic analysis of miRs role in osteoarthritis[J]. Osteoarthritis Cartilage, 2017, 25(8):1362-1371.
|
[30] |
Coutinho de Almeida R, Ramos YFM, Mahfouz A, et al. RNA sequencing data integration reveals an miRNA interactome of osteoarthritis cartilage[J]. Ann Rheum Dis, 2019, 78(2):270-277.
|
[31] |
Beyer C, Zampetaki A, Lin NY, et al. Signature of circulating miRs in osteoarthritis[J/OL]. Ann Rheum Dis, 2015, 74(3):e18.
|
[32] |
Kong R, Gao J, Si Y, et al. Combination of circulating miR-19b-3p, miR-122-5p and miR-486-5p expressions correlates with risk and disease severity of knee osteoarthritis[J]. Am J Transl Res, 2017, 9(6):2852-2864.
|
[33] |
Ntoumou E, Tzetis M, Braoudaki M, et al. Serum miR array analysis identifies miR-140-3p, miR-33b-3p and miR-671-3p as potential osteoarthritis biomarkers involved in metabolic processes[J]. Clin Epigenetics, 2017, 9:127.
|
[34] |
Wan L, Zhao Q, Niu G, et al. Plasma miR-136 can be used to screen patients with knee osteoarthritis from healthy controls by targeting IL-17[J]. Exp Ther Med, 2018, 16(4):3419-3424.
|
[35] |
Xia S, Tian H, Fan L, et al. Peripheral blood miR-181-5p serves as a marker for screening patients with osteoarthritis by targeting TNFα[J]. Clin Lab, 2017, 63(11):1819-1825.
|
[36] |
Zhou Z, Tian F, An N, et al. MiR-300 serves as potential biomarker to screen knee osteoarthritis patients by targeting TNFα[J]. Clin Lab, 2018, 64(4): 577-584.
|
[37] |
Latifkar A, Hur YH, Sanchez JC, et al. New insights into extracellular vesicle biogenesis and function[J]. J Cell Sci, 2019, 132(13):jcs222406.
|
[38] |
Mao G, Zhang Z, Hu S, et al. Exosomes derived from miR-92a-3p-overexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A[J]. Stem Cell Res Ther, 2018, 9(1):247.
|