[1] |
Bitar K, Greenwood-Van Meerveld B, Saad R, et al. Aging and gastrointestinal neuromuscular function: Insights from within and outside the gut[J]. Neurogastroenterol Motil, 2011, 23(6):490-501.
|
[2] |
Wiskur B, Greenwood-Van Meerveld B. The aging colon: The role of enteric neurodegeneration in constipation[J]. Curr Gastroenterol Rep, 2010, 12(6):507-512.
|
[3] |
Robson LG, Dyall S, Sidloff D, et al. Omega-3 polyunsaturated fatty acids increase the neurite outgrowth of rat sensory neurones throughout development and in aged animals[J]. Neurobiol Aging, 2010, 31(4):678-687.
|
[4] |
Bernard CE, Gibbons SJ, Gomez-Pinilla PJ, et al. Effect of age on the enteric nervous system of the human colon[J]. Neurogastroenterol Motil, 2009, 21(7):746-e46.
|
[5] |
Grishina I, Fenton A, Sankaran-Walters S. Gender differences, aging and hormonal status in mucosal injury and repair[J]. Aging Dis, 2014, 5(2):160-169.
|
[6] |
Kemmerly T, Kaunitz JD. Gastroduodenal mucosal defense[J]. Curr Opin Gastroenterol, 2014, 30(6):583-588.
|
[7] |
Man AL, Bertelli E, Rentini S, et al. Age-associated modifications of intestinalpermeability and innate immunity in human small intestine[J]. Clin Sci (Lond), 2015, 129(7):515-527.
|
[8] |
Nohra E, Bochicchio GV. Management of the gastrointestinal tract and nutrition in the geriatric surgical patient[J]. Surg Clin North Am, 2015, 95(1):85-101.
|
[9] |
Man AL, Gicheva N, Nicoletti C. The impact of ageing on the intestinal epithelial barrier and immune system[J]. Cell Immunol, 2014, 289(1-2):112-118.
|
[10] |
Ren WY, Wu KF, Li X, et al. Age-related changes in small intestinal mucosa epithelium architecture and epithelial tight junction in rat models[J]. Aging Clin Exp Res, 2014, 26(2):183-191.
|
[11] |
Nandagopalan PA, Magdalene KF, Binu A. Effect of aging on the quantitative number of Brunner's glands[J]. J Clin Diagn Res, 2014, 8(3):4-6.
|
[12] |
Rao SS, Go JT. Update on the management of constipation in the elderly: New treatment options[J]. Clin Interv Aging, 2010, 5:163-171.
|
[13] |
Yu SW, Rao SS. Anorectal physiology and pathophysiology in the elderly[J]. Clin Geriatr Med, 2014, 30(1):95-106.
|
[14] |
Schoffen JP, Santi Rampazzo AP, Cirilo CP, et al. Food restriction enhances oxidative status in aging rats with neuroprotective effects on myenteric neuron populations in the proximal colon[J]. Exp Gerontol, 2014, 51:54-64.
|
[15] |
Saffrey MJ. Aging of the mammalian gastrointestinal tract: A complex organ system[J]. Age, 2014, 36(3):9603.
|
[16] |
Singh J, Kumar S, Krishna CV, et al. Aging-associated oxidative stress leads to decrease in IAS tone via RhoA/ROCK downregula tion[J]. Am J Physiol Gastrointest Liver Physiol, 2014, 306(11):G983-G991.
|
[17] |
Mabbott NA. A breakdown in communication? Understanding the effects of aging on the human small intestine epithelium[J]. Clin Sci (Lond), 2015, 129(7):529-531.
|
[18] |
Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body[J]. PLoS Biol, 2016, 14(8):e1002533.
|
[19] |
Sommer F, Backhed F. The gut microbiota-masters of host development and physiology[J]. Nat Rev Microbiol, 2013, 11(4):227-238.
|
[20] |
Qin J, Li RQ, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464(7285):59-65.
|
[21] |
Claesson MJ, Cusack S, O'Sullivan O, et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly[J]. Proc Natl Acad Sci USA, 2011, 108(suppl 1):4586-4591.
|
[22] |
Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography[J]. Nature, 2012, 486(7402):222-227.
|
[23] |
Claesson MJ, Jeffery IB, Conde S, et al. Gut microbiota composition correlates with diet and health in the elderly[J]. Nature, 2012, 488(7410):178-184.
|
[24] |
Biagi E, Franceschi C, Rampelli S, et al. Gut microbiota and extreme longevity[J]. Curr Biol, 2016, 26(11):1480-1485.
|
[25] |
Maffei VJ, Kim S, Blanchard E, et al. Biological aging and the human gut microbiota[J]. J Gerontol, 2017, 72(11):1474-1482.
|
[26] |
United Nations Department of Economic and Social Affairs. International migrant stock 2013: By age and sex[EB/OL]. [2020-11-02](2014-02-10).
URL
|
[27] |
Howlett SE, Rockwood K. New horizons in frailty: Ageing and the deficit-scaling problem[J]. Age Ageing, 2013, 42(4):416-423.
|
[28] |
Mitnitski AB, Mogilner AJ, Rockwood K. Accumulation of deficits as a proxy measure of aging[J]. Sci World J, 2001, 1:323-336.
|
[29] |
Huttenhower C, Gevers D, Knight R, et al. Structure, function and diversity of the healthy human microbiome[J]. Nature, 2012, 486(7402):207-214.
|
[30] |
Goodrich JK, Waters JL, Poole AC, et al. Human genetics shape the Gut microbiome[J]. Cell, 2014, 159(4):789-799.
|
[31] |
Rajilić-Stojanović M, Heilig HGHJ, Molenaar D, et al. Development and application of the human intestinal tract chip, a phylogenetic microarray: Analysis of universally conserved phylotypes in the abundant microbiota of young and elderly adults[J]. Environ Microbiol, 2009, 11(7):1736-1751.
|
[32] |
Levy R, Borenstein E. Metagenomic systems biology and metabolic modeling of the human microbiome: From species composition to community assembly rules[J]. Gut Microbes, 2014, 5(2):37-41.
|
[33] |
Hubbard RE, Woodhouse KW. Frailty, inflammation and the elderly[J]. Biogerontology, 2010, 11(5):635-641.
|
[34] |
Jackson MA, Jeffery IB, Beaumont M, et al. Signatures of early frailty in the gut microbiota[J]. Genome Med, 2016, 8(1):8.
|
[35] |
O'Toole PW, Jeffery IB. Gut microbiota and aging[J]. Science, 2015, 350(6265):1214-1215.
|
[36] |
Amato KR, Sanders GJ. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes[J]. ISME J, 2019, 13(3):576-587.
|
[37] |
Van Tongeren SP, Slaets JPJ, Harmsen HJM, et al. Fecal microbiota composition and frailty[J]. Appl Environ Microbiol, 2005, 71(10):6438-6442.
|
[38] |
Seidel J, Valenzano DR. The role of the gut microbiome during host ageing[J]. F1000Research, 2018, 7:F1000.
|
[39] |
Zheng XJ, Wang SL, Jia W. Calorie restriction and its impact on gut microbial composition and global metabolism[J]. Front Med, 2018, 12(6):634-644.
|
[40] |
Brotman RM, Shardell MD, Gajer P, et al. Association between the vaginal microbiota, menopause status, and signs of vulvovaginal atrophy[J]. Menopause, 2013, 21(5):450-458.
|
[41] |
Beli E, Yan YQ, Moldovan L, et al. Restructuring of the gut microbiome by intermittent fasting prevents retinopathyand prolongs survival in db/db mice[J]. Diabetes, 2018, 67(9):1867-1879.
|
[42] |
Yassour M, Lim MY, Hyun SY, et al. Sub-clinical detection of gut microbial biomarkers of obesity and type 2 diabetes[J]. Genome Med, 2016, 8(1):17.
|
[43] |
Li J, Zhao Fq, Wang YD, et al. Gut microbiota dysbiosis contributes to the development of hypertension[J]. Microbiome, 2017, 5(1):14.
|
[44] |
Depommier C, Everard A, Druart C, et al. Supplementation with Akker mansia muciniphila in overweight and obese human volunteers: A proof-of-concept exploratory study[J]. Nat Med, 2019, 25(7):1096-1103.
|
[45] |
Kim S, Jazwinski M. The gut microbiota and healthy aging: A mini-review[J]. Gerontology, 2018, 64(6):513-520.
|
[46] |
Ruiz A, Cerdó T, Jáuregui R, et al. One-year calorie restriction impacts gut microbial composition but not its metabolic performance in obese adolescents[J]. Environ Microbiol, 2017, 19(4):1536-1551.
|
[47] |
Zapata HJ, Quagliarello VJ. The microbiota and microbiome in aging: Potential implications in health and age-related diseases[J]. J Am Geriatr Soc, 2015, 63(4):776-781.
|
[48] |
Piggott DA, Tuddenham S. The gut microbiome and frailty[J]. Transl Res, 2020, 221:23-43.
|
[49] |
Liu HH, Chen X, Hu XM, et al. Alterationsin the gut microbiome and metabolism with coronary artery disease severity[J]. Microbiome, 2019, 7(1):68.
|
[50] |
Calderón-Pérez L, Gosalbes MJ, Yuste S, et al. Gut metagenomic and short chain fatty acids signature in hypertension: A cross-sectional study[J]. Sci Rep, 2020, 10(1):1-16.
|
[51] |
GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2018, 392(10159):1923-1994.
|
[52] |
Adnan S, Nelson JW, Ajami NJ, et al. Alterations in the gut microbiota can elicit hypertension in rats[J]. Physiol Genom, 2017, 49(2):96-104.
|
[53] |
Marques FZ, Nelson E, Chu PY, et al. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice[J]. Circulation, 2017, 135(10):964-977.
|
[54] |
Yang T, Santisteban MM, Rodriguez V, et al. Gut dysbiosis is linked to hypertension[J]. Hypertensioin, 2015, 65(6):1331-1340.
|
[55] |
Dan X, Mushi Z, Baili W, et al. Differential analysis of hypertension-associated intestinal microbiota[J]. Int J Med Sci, 2019, 16(6):872-881.
|
[56] |
Sun S, Lulla A, Sioda M, et al. Gut microbiota composition and blood pressure: The CARDIA study[J]. Hypertension, 2019, 73(5):998-1006.
|
[57] |
Verhaar BJH, Collard D, Prodan A, et al. Associations between gut microbiota, faecal short-chain fatty acids, and blood pressure across ethnic groups: The HELIUS study[J]. Eur Heart J, 2020, 41(44):4259-4267.
|
[58] |
Campbell LA, Rosenfeld M. Pathogens and atherosclerosis: Update on the potential contribution of multiple infectious organisms to the pathogenesis of atherosclerosis[J]. Thromb Haemost, 2011, 106(5):858-867.
|
[59] |
Jie Z, Xia H, Zhong SL, et al. The gut microbiome in atherosclerotic cardiovascular disease[J]. Nat Commun, 2017, 8(1):845.
|
[60] |
Kowalski K, Mulak A. Brain-gut-microbiota axis in Alzheimer's disease[J]. J Neurogastroenterol Motil, 2019, 25(1):48-60.
|
[61] |
Brandscheid C, Schuck F, Reinhardt S, et al. Altered gut microbiome composition and tryptic activity of the 5xFAD Alzheimer's mouse model[J]. J Alzheimers Dis, 2017, 56(2):775-788.
|
[62] |
Fang P, Kazmi SA, Jameson KG, et al. The microbiome as a modifier of neurodegenerative disease risk[J]. Cell Host Microbe, 2020, 28(2):201-222.
|
[63] |
Westfall S, Lomis N, Kahouli I, et al. Microbiome, probiotics and neurodegenerative diseases: Deciphering the gut brain axis[J]. Cell Mol Life Sci, 2017, 74(4): 3769-3787.
|
[64] |
Gareau MG. Cognitive function and the microbiome[J]. Int Rev Neurobiol, 2016, 131:227-246.
|
[65] |
Wu SC, Cao ZS, Chang KM, et al. Intestinal microbial dysbiosis aggravates the progression of Alzheimer's disease in drosophila[J]. Nat Commun, 2017, 8(1):24.
|
[66] |
Fields CT, Sampson TR, Bruce-Keller AJ, et al. Defining dysbiosis in disorders of movement and motivation[J]. J Neurosci, 2018, 38(44):9414-9422.
|
[67] |
Wright ML, Fournier C, Houser MC, et al. Potential role of the gut microbiome in ALS: A systematic review[J]. Biol Res Nurs, 2018, 20(5):513-521.
|
[68] |
Geraldine K, Cao Kim-Anh Lê, Judd LM, et al. Microbiome profiling reveals gut dysbiosis in a transgenic mouse model of Huntington's disease[J]. Neurobiol Dis, 2020, 135:104268.
|
[69] |
Damms-Machado A, Mitra S, Schollenberger AE, et al. Effects of surgical and dietary weight loss therapy for obesity on gut microbiota composition and nutrient absorption[J]. Biomed Res Int, 2015, 2015:1-12.
|