切换至 "中华医学电子期刊资源库"

中华老年病研究电子杂志 ›› 2018, Vol. 05 ›› Issue (03) : 28 -32. doi: 10.3877/cma.j.issn.2095-8757.2018.03.006

所属专题: 文献

临床研究

大数据技术在老年人衰弱粗筛中的应用
龚瑞1, 刘鹏2,()   
  1. 1. 830001 乌鲁木齐,新疆维吾尔自治区人民医院老年医学中心
    2. 830001 乌鲁木齐,新疆维吾尔自治区人民医院信息中心
  • 收稿日期:2018-03-07 出版日期:2018-08-28
  • 通信作者: 刘鹏

Application of big data technology in the debilitation of the elderly

Rui Gong1, Peng Liu2,()   

  1. 1. Geriatrics Center, The People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China
    2. Information Center, The People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China
  • Received:2018-03-07 Published:2018-08-28
  • Corresponding author: Peng Liu
  • About author:
    Corresponding author: Liu Peng, Email:
引用本文:

龚瑞, 刘鹏. 大数据技术在老年人衰弱粗筛中的应用[J/OL]. 中华老年病研究电子杂志, 2018, 05(03): 28-32.

Rui Gong, Peng Liu. Application of big data technology in the debilitation of the elderly[J/OL]. Chinese Journal of Geriatrics Research(Electronic Edition), 2018, 05(03): 28-32.

目的

探讨大数据技术在老年人衰弱综合征粗筛中的应用价值。

方法

选取2017年7月至8月新疆维吾尔自治区人民医院收治的118例老年患者作为研究对象,均完成Fried衰弱表型评估。再利用大数据技术(Hadoop)收集、整理患者病例资料中的各项指标,以累计缺陷衰弱指数法(frailty index, FI)为基础,并结合其他评估工具建立评价指标体系,模拟计算FI值。通过不断调整指标项目,确定与Fried衰弱表型评估在相关性和一致性等方面契合的指标集合。

结果

Fried衰弱表型分期:无衰弱28例,衰弱前期68例,衰弱22例;大数据技术自动评估粗筛:无衰弱8例,衰弱110例(不区分衰弱前期与衰弱)。利用大数据技术对本组老年患者计算的模拟FI平均值为0.58±0.20。FI值的增加与Fried分期呈正相关(r=0.607,P<0.01)。以Fried衰弱表型分期结果为标准,将本组老年人分为无衰弱和衰弱(衰弱前期+衰弱)两组,代入最终确定的FI值绘制ROC曲线,得到曲线下面积(AUC)为0.912(95%CI:0.861-0.963,P<0.01),得出FI临界值为0.28,其灵敏度、特异度及Youden指数分别为99%、75%、0.74。将FI=0.28引入大数据技术评估模型,其对老年人群的衰弱筛查结果与Fried衰弱表型分期结果的一致性Kappa值为0.169(P<0.01)。

结论

采用大数据技术建立模型对入院老年人进行衰弱粗筛是可行的,其筛查结果与Fried衰弱表型分期结果具有一定的一致性,可以为临床诊断提供参考。

Objective

To explore the application value of big data technology in coarse screening of elderly debilitating syndrome.

Methods

A total of 118 elderly patients in the People's Hospital of Xinjiang Uygur Autonomous Region from July to August 2017 were selected as subjects. They were all completed with Fried's weak phenotypic assessment. Big data technology (Hadoop) were subsequently used to collect and sort out the indicators. Based on the cumulative defect index (FI), and combine with other evaluation tools, an evaluation index system to simulate the FI value were established. By continuously adjusting the indicator items, the set of indicators that fit the relevance and consistency of the Fried weak phenotypic assessment were determined.

Results

Fried fragility phenotypic staging: 28 cases without fragility, 68 cases with weak pre- fragility, and 22 cases with fragility; Big data technology automatically evaluated coarse screening: 8 cases without fragility and 110 cases with fragility (not distinguishing between pre-fragility and fragility). The mean simulated FI calculated for elderly patients using big data technology was 0.58 ± 0.20. The increase in FI value was positively correlated with Fried stage (r=0.607, P<0.01). Based on the Fried fragility phenotypic staging results, the elderly were divided into two groups: no fragility and fragility (pre- fragility + fragility). The ROC curve was drawn into the final FI value, and the area under the curve (AUC) was 0.912 ( 95% CI: 0.861-0.963, P <0.01), the FI threshold was 0.28, and the sensitivity, specificity and Youden index were 99%, 75%, and 0.74, respectively. FI=0.28 was introduced into the big data technology assessment method, and the Kappa value of the weak screening test results of the elderly group and the Fried weak phenotypic staging results was 0.169 (P<0.01).

Conclusion

It is feasible to use the big data technology to establish a model for the fragility and coarse screening of the elderly in the hospital. The screening results have a certain consistency with the Fried fragility phenotypic staging results, which can provide reference for clinical diagnosis.

表1 Hadoop技术指标提取情况
图1 大数据技术模拟FI值的ROC曲线
[1]
2017年中国老年消费习惯白皮书(2018-01-23).

URL    
[2]
Cooper C, Dere W, Evan W, et al. Fraihy and sarcopenia: definitions and outcome parameters[J]. Osteoporos Int, 2012, 23(7):1839-1848.
[3]
Walston J, Hadley EC, Ferrucci L, et al. Research agenda for frailty in older adults: toward a better understanding of physiology and etiology: summary from the American Geriatrics Society/National Institute on Aging Research Conference on Frailty in Older Aduhs[J]. J Am Geriatr Soe, 2006, 54(6):991-1001.
[4]
Shamliyan T, Talley KM, Ramakrishnan R, et a1. Association of frailty with survival: a systematic literature review[J]. Ageing Res Rev, 2013, 12(2):719-736.
[5]
奚兴,郭桂芳,孙静.老年人衰弱评估工具及其应用研究进展[J].中国老年学杂志,2015,35(20):5993-5996.
[6]
Gantz J, Reinsel D. 2011 Digital Universe Study: Extracting Valuefrom Chao[M].IDC Go-to-Market Services,2011.
[7]
Hilbert M, Lopez P. The world's technological capacity to store, communicate, and compute information[J]. Science, 2011, 332(6025):60-65.
[8]
Bughin J, Chui M, Manyika J. Clouds, big data, and smart assets: ten tech-enabled business trends to watch[J]. Mckinsey Quarterly, 2010, 56(1):75-86.
[9]
Searle SD, Mitnitski A, Gahbauer EA, et al. A standard procedure for creating a frailty index[J]. BMC Geriatr, 2008, 8(1):1471-2318.
[10]
Kulminski AM, Ukraintseva SV, Kulminskaya IV,et al. Cumulative deficits better characterize susceptibility to death in the elderly than phenotypic frailty: lessons from the Cardiovascular Health Study[J]. J Am Geriatr Soc, 2008, 56(5):898-903.
[11]
Malmstrom TK, Miller DK, Morley JE. A comparison of for frailty models[J]. J Am Geriatr Soc, 2014, 62(4):721-726.
[12]
Rockwood K, Andrew M, Mitnitski A. A comparison of two approaches to measuring frailty in elderly people[J]. J Gerontol A Biol Sci Med Sci, 2007, 62(7):738-743.
[13]
孙凯旋,刘永兵,薛谨,等.基于老年综合评估体系构建的衰弱指数模型在老年住院患者中的应用[J/CD].中华老年病研究电子杂志,2017,4(2):43-47.
[14]
Collard RM, Boter H, Schoevers RA, et a1. Prevalence of frailty in community-dwelling olderpersons: a systematic review[J]. J Am Geriatr Soc, 2012, 60(8):1487-1492.
[15]
Wikipedia TFE. Definition of Big Data[EB/OL].

URL    
[16]
孟小峰,慈祥.大数据管理:概念、技术与挑战[J].计算机研究与发展,2013,50(1):146-169.
[17]
赵保,任慧朋.Hadoop云平台下医疗档案共享体系的构建[J].中国病案,2016,17(11):47-50.
[18]
周晟劫,袁骏毅,李波.基于Hadoop的数据中心在三甲医院的探索研究[J].中国数字医学,2016,11(8):25-27.
[1] 郝玥萦, 毛盈譞, 张羽, 汪佳旭, 韩林霖, 匡雯雯, 孟瑶, 杨秀华. 超声引导衰减参数成像评估肝脂肪变性及其对心血管疾病风险的预测价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 770-777.
[2] 李霞林, 贺芳. 产后出血风险评估和早期预警系统[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 498-503.
[3] 唐金侨, 叶宇佳, 王港, 赵彬, 马艳宁. 医学影像学检查方法在颞下颌关节紊乱病中临床应用研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 406-411.
[4] 祝炜安, 林华慧, 吴建杰, 黄炯煅, 吴婷婷, 赖文杰. RDM1通过CDK4促进前列腺癌细胞进展的研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 618-625.
[5] 胡思平, 熊性宇, 徐航, 杨璐. 衰老相关分泌表型因子在前列腺癌发生发展中的作用机制[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 425-434.
[6] 刘明辉, 葛方明. MRI 对腹股沟疝修补术后患者早期并发症的评估价值研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 579-583.
[7] 沈琪乐, 赵勤华, 宫素岗, 刘锦铭, 王岚, 邱宏玲. COPD 稳定期患者血清CC16 蛋白表达与肺功能、肺气肿表型的关系分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 690-695.
[8] 吴警, 吐尔洪江·吐逊, 温浩. 肝切除术前肝功能评估新进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 889-893.
[9] 周迪, 全志伟. 规范化胆囊良性疾病诊治流程减少胆囊癌误诊误治[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 749-753.
[10] 梁艳娉, 列诗韵, 王艺穗, 吴晓瑛, 林颖. 基于内镜操作细节记录系统构建胃底静脉曲张内镜下组织胶注射术的标准化管理方案[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 705-709.
[11] 程柏凯, 杨光. 高胰岛素-正葡萄糖钳夹技术评估慢性肾脏病患者胰岛素抵抗的研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 334-339.
[12] 杨智钧, 谷佳, 丁聿贤, 张正奎, 于如同. 脑胶质瘤患者血清炎性因子水平与病理分级及预后的相关性[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(04): 238-242.
[13] 孙文恺, 沈青, 杭丽, 张迎春. 纤维蛋白原与清蛋白比值、中性粒细胞与白蛋白比值、C反应蛋白与溃疡性结肠炎病情评估和预后的关系[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 426-431.
[14] 何蓉, 张义, 李盼盼, 宋歌声, 李爱银, 王艺. 直肠癌神经浸润的影像评估进展[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(04): 378-381.
[15] 芦乙滨, 李梦蝶, 许明. PDCA(计划、执行、检查和处理)循环教学在内科住院医师重症超声指导血流动力学评估培训中的效果评价[J/OL]. 中华卫生应急电子杂志, 2024, 10(04): 224-228.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?