切换至 "中华医学电子期刊资源库"

中华老年病研究电子杂志 ›› 2018, Vol. 05 ›› Issue (03) : 28 -32. doi: 10.3877/cma.j.issn.2095-8757.2018.03.006

所属专题: 文献

临床研究

大数据技术在老年人衰弱粗筛中的应用
龚瑞1, 刘鹏2,()   
  1. 1. 830001 乌鲁木齐,新疆维吾尔自治区人民医院老年医学中心
    2. 830001 乌鲁木齐,新疆维吾尔自治区人民医院信息中心
  • 收稿日期:2018-03-07 出版日期:2018-08-28
  • 通信作者: 刘鹏

Application of big data technology in the debilitation of the elderly

Rui Gong1, Peng Liu2,()   

  1. 1. Geriatrics Center, The People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China
    2. Information Center, The People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China
  • Received:2018-03-07 Published:2018-08-28
  • Corresponding author: Peng Liu
  • About author:
    Corresponding author: Liu Peng, Email:
引用本文:

龚瑞, 刘鹏. 大数据技术在老年人衰弱粗筛中的应用[J]. 中华老年病研究电子杂志, 2018, 05(03): 28-32.

Rui Gong, Peng Liu. Application of big data technology in the debilitation of the elderly[J]. Chinese Journal of Geriatrics Research(Electronic Edition), 2018, 05(03): 28-32.

目的

探讨大数据技术在老年人衰弱综合征粗筛中的应用价值。

方法

选取2017年7月至8月新疆维吾尔自治区人民医院收治的118例老年患者作为研究对象,均完成Fried衰弱表型评估。再利用大数据技术(Hadoop)收集、整理患者病例资料中的各项指标,以累计缺陷衰弱指数法(frailty index, FI)为基础,并结合其他评估工具建立评价指标体系,模拟计算FI值。通过不断调整指标项目,确定与Fried衰弱表型评估在相关性和一致性等方面契合的指标集合。

结果

Fried衰弱表型分期:无衰弱28例,衰弱前期68例,衰弱22例;大数据技术自动评估粗筛:无衰弱8例,衰弱110例(不区分衰弱前期与衰弱)。利用大数据技术对本组老年患者计算的模拟FI平均值为0.58±0.20。FI值的增加与Fried分期呈正相关(r=0.607,P<0.01)。以Fried衰弱表型分期结果为标准,将本组老年人分为无衰弱和衰弱(衰弱前期+衰弱)两组,代入最终确定的FI值绘制ROC曲线,得到曲线下面积(AUC)为0.912(95%CI:0.861-0.963,P<0.01),得出FI临界值为0.28,其灵敏度、特异度及Youden指数分别为99%、75%、0.74。将FI=0.28引入大数据技术评估模型,其对老年人群的衰弱筛查结果与Fried衰弱表型分期结果的一致性Kappa值为0.169(P<0.01)。

结论

采用大数据技术建立模型对入院老年人进行衰弱粗筛是可行的,其筛查结果与Fried衰弱表型分期结果具有一定的一致性,可以为临床诊断提供参考。

Objective

To explore the application value of big data technology in coarse screening of elderly debilitating syndrome.

Methods

A total of 118 elderly patients in the People's Hospital of Xinjiang Uygur Autonomous Region from July to August 2017 were selected as subjects. They were all completed with Fried's weak phenotypic assessment. Big data technology (Hadoop) were subsequently used to collect and sort out the indicators. Based on the cumulative defect index (FI), and combine with other evaluation tools, an evaluation index system to simulate the FI value were established. By continuously adjusting the indicator items, the set of indicators that fit the relevance and consistency of the Fried weak phenotypic assessment were determined.

Results

Fried fragility phenotypic staging: 28 cases without fragility, 68 cases with weak pre- fragility, and 22 cases with fragility; Big data technology automatically evaluated coarse screening: 8 cases without fragility and 110 cases with fragility (not distinguishing between pre-fragility and fragility). The mean simulated FI calculated for elderly patients using big data technology was 0.58 ± 0.20. The increase in FI value was positively correlated with Fried stage (r=0.607, P<0.01). Based on the Fried fragility phenotypic staging results, the elderly were divided into two groups: no fragility and fragility (pre- fragility + fragility). The ROC curve was drawn into the final FI value, and the area under the curve (AUC) was 0.912 ( 95% CI: 0.861-0.963, P <0.01), the FI threshold was 0.28, and the sensitivity, specificity and Youden index were 99%, 75%, and 0.74, respectively. FI=0.28 was introduced into the big data technology assessment method, and the Kappa value of the weak screening test results of the elderly group and the Fried weak phenotypic staging results was 0.169 (P<0.01).

Conclusion

It is feasible to use the big data technology to establish a model for the fragility and coarse screening of the elderly in the hospital. The screening results have a certain consistency with the Fried fragility phenotypic staging results, which can provide reference for clinical diagnosis.

表1 Hadoop技术指标提取情况
图1 大数据技术模拟FI值的ROC曲线
[1]
2017年中国老年消费习惯白皮书(2018-01-23).

URL    
[2]
Cooper C, Dere W, Evan W, et al. Fraihy and sarcopenia: definitions and outcome parameters[J]. Osteoporos Int, 2012, 23(7):1839-1848.
[3]
Walston J, Hadley EC, Ferrucci L, et al. Research agenda for frailty in older adults: toward a better understanding of physiology and etiology: summary from the American Geriatrics Society/National Institute on Aging Research Conference on Frailty in Older Aduhs[J]. J Am Geriatr Soe, 2006, 54(6):991-1001.
[4]
Shamliyan T, Talley KM, Ramakrishnan R, et a1. Association of frailty with survival: a systematic literature review[J]. Ageing Res Rev, 2013, 12(2):719-736.
[5]
奚兴,郭桂芳,孙静.老年人衰弱评估工具及其应用研究进展[J].中国老年学杂志,2015,35(20):5993-5996.
[6]
Gantz J, Reinsel D. 2011 Digital Universe Study: Extracting Valuefrom Chao[M].IDC Go-to-Market Services,2011.
[7]
Hilbert M, Lopez P. The world's technological capacity to store, communicate, and compute information[J]. Science, 2011, 332(6025):60-65.
[8]
Bughin J, Chui M, Manyika J. Clouds, big data, and smart assets: ten tech-enabled business trends to watch[J]. Mckinsey Quarterly, 2010, 56(1):75-86.
[9]
Searle SD, Mitnitski A, Gahbauer EA, et al. A standard procedure for creating a frailty index[J]. BMC Geriatr, 2008, 8(1):1471-2318.
[10]
Kulminski AM, Ukraintseva SV, Kulminskaya IV,et al. Cumulative deficits better characterize susceptibility to death in the elderly than phenotypic frailty: lessons from the Cardiovascular Health Study[J]. J Am Geriatr Soc, 2008, 56(5):898-903.
[11]
Malmstrom TK, Miller DK, Morley JE. A comparison of for frailty models[J]. J Am Geriatr Soc, 2014, 62(4):721-726.
[12]
Rockwood K, Andrew M, Mitnitski A. A comparison of two approaches to measuring frailty in elderly people[J]. J Gerontol A Biol Sci Med Sci, 2007, 62(7):738-743.
[13]
孙凯旋,刘永兵,薛谨,等.基于老年综合评估体系构建的衰弱指数模型在老年住院患者中的应用[J/CD].中华老年病研究电子杂志,2017,4(2):43-47.
[14]
Collard RM, Boter H, Schoevers RA, et a1. Prevalence of frailty in community-dwelling olderpersons: a systematic review[J]. J Am Geriatr Soc, 2012, 60(8):1487-1492.
[15]
Wikipedia TFE. Definition of Big Data[EB/OL].

URL    
[16]
孟小峰,慈祥.大数据管理:概念、技术与挑战[J].计算机研究与发展,2013,50(1):146-169.
[17]
赵保,任慧朋.Hadoop云平台下医疗档案共享体系的构建[J].中国病案,2016,17(11):47-50.
[18]
周晟劫,袁骏毅,李波.基于Hadoop的数据中心在三甲医院的探索研究[J].中国数字医学,2016,11(8):25-27.
[1] 涂鹏, 张晓航, 董虹美, 陈功立, 冉素真. 超声多普勒评估在双胎输血综合征射频消融减胎术后的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(05): 492-497.
[2] 姚咏明. 如何精准评估烧伤脓毒症患者免疫状态[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 552-552.
[3] 朴广昊, 李屹洲, 刘瑞, 赵建民, 王凌峰. 皮肤撕脱伤撕脱皮瓣活力早期评估与修复的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 528-532.
[4] 杜滨和, 徐楠, 杨云川, 崔培元. 5项改良衰弱指数预测胰十二指肠切除术近期预后的价值探讨[J]. 中华普通外科学文献(电子版), 2023, 17(06): 444-448.
[5] 李晓阳, 刘柏隆, 周祥福. 大数据及人工智能对女性盆底功能障碍性疾病的诊断及风险预测[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 549-552.
[6] 李腾成, 狄金明. 2023 V1版前列腺癌NCCN指南更新要点解读[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 313-318.
[7] 王蕾, 王少华, 牛海珍, 尹腾飞. 儿童腹股沟疝围手术期风险预警干预[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 768-772.
[8] 双磊, 范宏瑾, 游兆媛. 日间疝外科手术病房护理评估记录单的改良和应用[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(05): 662-666.
[9] 曾静, 范皎, 史镜琪, 刘静, 李春霖, 徐国纲, 李天志. 衰弱与非衰弱高龄老人外周血单个核细胞单细胞转录组特征差异分析[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 159-166.
[10] 王晓东, 汪恺, 葛昭, 丁忠祥, 徐骁. 计算机视觉技术在肝癌肝移植疗效提升中的研究进展[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 361-366.
[11] 杨长沅, 凌曦淘, 丘伽美, 段若兰, 李琴, 林玉婕, 秦新东, 侯海晶, 卢富华, 苏国彬. 慢性肾脏病患者衰弱的筛查/评估工具研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 229-233.
[12] 王淑友, 宋晓晶, 贾术永, 王广军, 张维波. 肝脏去唾液酸糖蛋白受体靶向活体荧光成像评估酒精性肝损伤肝脏功能的研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 443-446.
[13] 吴蓉菊, 向平超. COPD频繁急性加重表型与炎性因子相关性研究[J]. 中华临床医师杂志(电子版), 2023, 17(9): 939-947.
[14] 易成, 韦伟, 赵宇亮. 急性肾脏病的概念沿革[J]. 中华临床医师杂志(电子版), 2023, 17(08): 906-910.
[15] 韩佳熙, 范向民, 苏宁. 数字技术评估方法在神经系统运动障碍诊疗中应用的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(03): 275-279.
阅读次数
全文


摘要