[1] |
Webster SF, Ghalei H. Maturation of small nucleolar RNAs: From production to function[J]. RNA Biol, 2023, 20(1):715-736.
|
[2] |
Stepanov GA, Filippova JA, Komissarov AB, et al. Regulatory role of small nucleolar rnas in human diseases[J]. Biomed Res Int, 2015, 2015:206849.
|
[3] |
Schubert T, Pusch MC, Diermeier S, et al. Df31 protein and snornas maintain accessible higher-order structures of chromatin[J]. Mol Cell, 2012, 48(3):434-444.
|
[4] |
Holley CL, Li MW, Scruggs BS, et al. Cytosolic accumulation of small nucleolar rnas (snornas) is dynamically regulated by nadph oxidase[J]. J Biol Chem, 2015, 290(18):11741-11748.
|
[5] |
Chabronova A, Holmes TL, Hoang DM, et al. Snornas in cardiovascular development, function, and disease[J]. Trends Mol Med, 2024, 30(6):562-578.
|
[6] |
Liu Y, Zhao C, Wang G, et al. SNORD1C maintains stemness and 5-FU resistance by activation of Wnt signaling pathway in colorectal cancer[J]. Cell Death Discov, 2022, 8(1):200.
|
[7] |
Xu G, Yang F, Ding CL, et al. Small nucleolar RNA 113-1 suppresses tumorigenesis in hepatocellular carcinoma[J]. Mol Cancer, 2014, 13:216.
|
[8] |
Xia C, Dong X, Li H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J (Engl), 2022, 135(5):584-590.
|
[9] |
Li K, Lin T, Xue W, et al. Current status of diagnosis and treatment of bladder cancer in China - Analyses of Chinese Bladder Cancer Consortium database[J]. Asian J Urol, 2015, 2(2):63-69.
|
[10] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249.
|
[11] |
Hussain SA, Lester JF, Jackson R, et al. Addition of nintedanib or placebo to neoadjuvant gemcitabine and cisplatin in locally advanced muscle-invasive bladder cancer (neoblade): A double-blind, randomised, phase 2 trial[J]. Lancet Oncol, 2022, 23(5):650-658.
|
[12] |
Motzer RJ, McDermott DF, Escudier B, et al. Conditional survival and long-term efficacy with nivolumab plus ipilimumab versus sunitinib in patients with advanced renal cell carcinoma[J]. Cancer, 2022, 128(11):2085-2097.
|
[13] |
Becker REN, Meyer AR, Brant A, et al. Clinical restaging and tumor sequencing are inaccurate indicators of response to neoadjuvant chemotherapy for muscle-invasive bladder cancer[J]. Eur Urol, 2021, 79(3):364-371.
|
[14] |
Witjes JA, Bruins HM, Cathomas R, et al. European association of urology guidelines on muscle-invasive and metastatic bladder cancer: Summary of the 2020 guidelines[J]. Eur Urol, 2021, 79(1):82-104.
|
[15] |
Bratkovič T, Božič J, Rogelj B. Functional diversity of small nucleolar RNAs[J]. Nucleic Acids Res, 2020, 48(4):1627-1651.
|
[16] |
Dsouza VL, Adiga D, Sriharikrishnaa S, et al. Small nucleolar rna and its potential role in breast cancer - a comprehensive review[J]. Biochim Biophys Acta Rev Cancer, 2021, 1875(1):188501.
|
[17] |
Zimta AA, Tigu AB, Braicu C, et al. An emerging class of long non-coding rna with oncogenic role arises from the snorna host genes[J]. Front Oncol, 2020, 10:389.
|
[18] |
Bergeron D, Paraqindes H, Fafard-Couture E, et al. Snodb 2.0: An enhanced interactive database, specializing in human snornas[J]. Nucleic Acids Res, 2023, 51(D1):D291-D296.
|
[19] |
Bouchard-Bourelle P, Desjardins-Henri C, Mathurin-St-Pierre D, et al. Snodb: An interactive database of human snorna sequences, abundance and interactions[J]. Nucleic Acids Res, 2020, 48(D1):D220-D225.
|
[20] |
Tollervey D, Kiss T. Function and synthesis of small nucleolar rnas[J]. Curr Opin Cell Biol, 1997, 9(3):337-342.
|
[21] |
Dennis PP, Omer A. Small non-coding rnas in archaea[J]. Curr Opin Microbiol, 2005, 8(6):685-694.
|
[22] |
Nahkuri S, Taft RJ, Korbie DJ, et al. Molecular evolution of the hbii-52 snorna cluster[J]. J Mol Biol, 2008, 381(4):810-815.
|
[23] |
Luo Y, Li S. Genome-wide analyses of retrogenes derived from the human box h/aca snornas[J]. Nucleic Acids Res, 2007, 35(2):559-571.
|
[24] |
Scott MS, Ono M. From snorna to mirna: Dual function regulatory non-coding rnas[J]. Biochimie, 2011, 93(11):1987-1992.
|
[25] |
Weber MJ. Mammalian small nucleolar rnas are mobile genetic elements[J]. PLoS Genet, 2006, 2(12):e205.
|
[26] |
Jorjani H, Kehr S, Jedlinski DJ, et al. An updated human snornaome[J]. Nucleic Acids Res, 2016, 44(11):5068-5082.
|
[27] |
Grzechnik P, Szczepaniak SA, Dhir S, et al. Nuclear fate of yeast snorna is determined by co-transcriptional rnt1 cleavage[J]. Nat Commun, 2018, 9(1):1783.
|
[28] |
Khoshnevis S, Dreggors RE, Hoffmann TFR, et al. A conserved bcd1 interaction essential for box c/d snornp biogenesis[J]. J Biol Chem, 2019, 294(48):18360-18371.
|
[29] |
Dupuis-Sandoval F, Poirier M, Scott MS. The emerging landscape of small nucleolar rnas in cell biology[J]. Wiley Interdiscip Rev RNA, 2015, 6(4):381-397.
|
[30] |
Meier UT. RNA modification in Cajal bodies[J]. RNA Biol, 2017, 14(6):693-700.
|
[31] |
Rajan KS, Doniger T, Cohen-Chalamish S, et al. Pseudouridines on trypanosoma brucei spliceosomal small nuclear RNAs and their implication for RNA and protein interactions[J]. Nucleic Acids Res, 2019, 47(14):7633-7647.
|
[32] |
Kiss T. Biogenesis of small nuclear rnps[J]. J Cell Sci, 2004, 117(Pt 25):5949-5951.
|
[33] |
Marnef A, Richard P, Pinzon N, et al. Targeting vertebrate intron-encoded box c/d 2'-o-methylation guide rnas into the cajal body[J]. Nucleic Acids Res, 2014, 42(10):6616-6629.
|
[34] |
McMahon M, Contreras A, Ruggero D. Small rnas with big implications: New insights into h/aca snorna function and their role in human disease[J]. Wiley Interdiscip Rev RNA, 2015, 6(2):173-189.
|
[35] |
Liu B, Ni J, Fournier MJ. Probing rna in vivo with methylation guide small nucleolar rnas[J]. Methods, 2001, 23(3):276-286.
|
[36] |
Brameier M, Herwig A, Reinhardt R, et al. Human box c/d snornas with mirna like functions: Expanding the range of regulatory rnas[J]. Nucleic Acids Res, 2011, 39(2):675-686.
|
[37] |
Michel CI, Holley CL, Scruggs BS, et al. Small nucleolar rnas u32a, u33, and u35a are critical mediators of metabolic stress[J]. Cell Metab, 2011, 14(1):33-44.
|
[38] |
Huang C, Shi J, Guo Y, et al. A snorna modulates mrna 3' end processing and regulates the expression of a subset of mrnas[J]. Nucleic Acids Res, 2017, 45(15):8647-8660.
|
[39] |
Schubert T, Langst G. Changes in higher order structures of chromatin by rnp complexes[J]. RNA Biol, 2013, 10(2):175-179.
|
[40] |
Deogharia M, Majumder M. Guide snornas: Drivers or passengers in human disease?[J]. Biology (Basel), 2018, 8(1):1.
|
[41] |
Abel Y, Rederstorff M. Snornas and the emerging class of sdrnas: Multifaceted players in oncogenesis[J]. Biochimie, 2019, 164:17-21.
|
[42] |
Siprashvili Z, Webster DE, Johnston D, et al. The noncoding rnas snord50a and snord50b bind k-ras and are recurrently deleted in human cancer[J]. Nat Genet, 2016, 48(1):53-58.
|
[43] |
Nogueira Jorge NA, Wajnberg G, Ferreira CG, et al. Snorna and pirna expression levels modified by tobacco use in women with lung adenocarcinoma[J]. PLoS One, 2017, 12(8):e0183410.
|
[44] |
Wang K, Wang S, Zhang Y, et al. SNORD88C guided 2'-O-methylation of 28S rRNA regulates SCD1 translation to inhibit autophagy and promote growth and metastasis in non-small cell lung cancer[J]. Cell Death Differ, 2023, 30(2):341-355.
|
[45] |
Chu L, Su MY, Maggi LB, et al. Multiple myeloma-associated chromosomal translocation activates orphan snorna aca11 to suppress oxidative stress[J]. J Clin Invest, 2012, 122(8):2793-2806.
|
[46] |
Cao P, Yang A, Wang R, et al. Germline duplication of snora18l5 increases risk for hbv-related hepatocellular carcinoma by altering localization of ribosomal proteins and decreasing levels of p53[J]. Gastroenterology, 2018, 155(2):542-556.
|
[47] |
Langhendries JL, Nicolas E, Doumont G, et al. The human box c/d snornas u3 and u8 are required for pre-rrna processing and tumorigenesis[J]. Oncotarget, 2016, 7(37):59519-59534.
|
[48] |
Chen L, Han L, Wei J, et al. Snord76, a box c/d snorna, acts as a tumor suppressor in glioblastoma[J]. Sci Rep, 2015, 5:8588.
|
[49] |
Xu B, Ye MH, Lv SG, et al. Snord47, a box c/d snorna, suppresses tumorigenesis in glioblastoma[J]. Oncotarget, 2017, 8(27):43953-43966.
|
[50] |
Dong XY, Rodriguez C, Guo P, et al. Snorna u50 is a candidate tumor-suppressor gene at 6q14.3 with a mutation associated with clinically significant prostate cancer[J]. Hum Mol Genet, 2008, 17(7):1031-1042.
|
[51] |
Liao J, Yu L, Mei Y, et al. Small nucleolar rna signatures as biomarkers for non-small-cell lung cancer[J]. Mol Cancer, 2010, 9:198.
|
[52] |
Cui L, Nakano K, Obchoei S, et al. Small nucleolar noncoding rna snora23, up-regulated in human pancreatic ductal adenocarcinoma, regulates expression of spectrin repeat-containing nuclear envelope 2 to promote growth and metastasis of xenograft tumors in mice[J]. Gastroenterology, 2017, 153(1):292-306.e2.
|
[53] |
Yuan S, Wu Y, Wang Y, et al. An oncolytic adenovirus expressing snord44 and gas5 exhibits antitumor effect in colorectal cancer cells[J]. Hum Gene Ther, 2017, 28(8):690-700.
|
[54] |
Sun Y, Chen E, Li Y, et al. H/aca box small nucleolar rna 7b acts as an oncogene and a potential prognostic biomarker in breast cancer[J]. Cancer Cell Int, 2019, 19:125.
|
[55] |
Gee HE, Buffa FM, Camps C, et al. The small-nucleolar rnas commonly used for microrna normalisation correlate with tumour pathology and prognosis[J]. Br J Cancer, 2011, 104(7):1168-1177.
|
[56] |
Mei YP, Liao JP, Shen J, et al. Small nucleolar rna 42 acts as an oncogene in lung tumorigenesis[J]. Oncogene, 2012, 31(22):2794-804.
|
[57] |
Okugawa Y, Toiyama Y, Toden S, et al. Clinical significance of SNORA42 as an oncogene and a prognostic biomarker in colorectal cancer[J]. Gut, 2017, 66(1):107-117.
|
[58] |
Yoshida K, Toden S, Weng W, et al. Snora21 - an oncogenic small nucleolar rna, with a prognostic biomarker potential in human colorectal cancer[J]. EBioMedicine, 2017, 22:68-77.
|
[59] |
Williams GT, Farzaneh F. Are snornas and snorna host genes new players in cancer? [J]. Nat Rev Cancer, 2012, 12(2):84-88.
|
[60] |
Li T, Huang M, Sun N, et al. Tumorigenesis of basal muscle invasive bladder cancer was mediated by pten protein degradation resulting from snhg1 upregulation[J]. J Exp Clin Cancer Res, 2024, 43(1):50.
|
[61] |
Wang M, Guo C, Wang L, Luo G, et al. Long noncoding rna gas5 promotes bladder cancer cells apoptosis through inhibiting ezh2 transcription[J]. Cell Death Dis, 2018, 9(2):238.
|
[62] |
Chen D, Guo Y, Chen Y, et al. Lncrna growth arrest-specific transcript 5 targets mir-21 gene and regulates bladder cancer cell proliferation and apoptosis through pten[J]. Cancer Med, 2020, 9(8):2846-2858.
|
[63] |
Liu Z, Wang W, Jiang J, et al. Downregulation of gas5 promotes bladder cancer cell proliferation, partly by regulating cdk6[J]. PLoS One, 2013, 8(9):e73991.
|
[64] |
Zhang H, Guo Y, Song Y, et al. Long noncoding rna gas5 inhibits malignant proliferation and chemotherapy resistance to doxorubicin in bladder transitional cell carcinoma[J]. Cancer Chemother Pharmacol, 2017, 79(1):49-55.
|
[65] |
Xie J, Ni J, Shi H, et al. Lncrna snhg3 enhances bmi1 mrna stability by binding and regulating c-myc: Implications for the carcinogenic role of snhg3 in bladder cancer[J]. Cancer Med, 2023, 12(5):5718-5735.
|
[66] |
Dai G, Huang C, Yang J, et al. Lncrna snhg3 promotes bladder cancer proliferation and metastasis through mir-515-5p/gins2 axis[J]. J Cell Mol Med, 2020, 24(16):9231-9243.
|
[67] |
Zhou Y, Tian B, Tang J, et al. Snhg7: A novel vital oncogenic lncrna in human cancers[J]. Biomed Pharmacother, 2020, 124:109921.
|
[68] |
Zhao Q, Gao S, Du Q, et al. Long non-coding rna snhg20 promotes bladder cancer via activating the wnt/beta-catenin signalling pathway[J]. Int J Mol Med, 2018, 42(5):2839-2848.
|
[69] |
Wang W, Chen S, Song X, et al. Elk1/lncrna-snhg7/mir-2682-5p feedback loop enhances bladder cancer cell growth[J]. Life Sci, 2020, 262:118386.
|
[70] |
Ping Q, Shi Y, Yang M, et al. Lncrna dancr regulates lymphatic metastasis of bladder cancer via the mir-335/vegf-c axis[J]. Transl Androl Urol, 2021, 10(4):1743-1753.
|
[71] |
Zhan Y, Chen Z, Li Y, et al. Long non-coding rna dancr promotes malignant phenotypes of bladder cancer cells by modulating the mir-149/msi2 axis as a cerna[J]. J Exp Clin Cancer Res, 2018, 37(1):273.
|
[72] |
Li YH, Hu YQ, Wang SC, et al. Lncrna snhg5: A new budding star in human cancers[J]. Gene, 2020, 749:144724.
|
[73] |
Wang C, Tao W, Ni S, et al. Upregulation of lncrna snorna host gene 6 regulates nuak family snf1-like kinase-1 expression by competitively binding microrna-125b and interacting with snail1/2 in bladder cancer[J]. J Cell Biochem, 2019, 120(1):357-367.
|
[74] |
Ma Z, Xue S, Zeng B, et al. Lncrna snhg5 is associated with poor prognosis of bladder cancer and promotes bladder cancer cell proliferation through targeting p27[J]. Oncol Lett, 2018, 15(2):1924-1930.
|
[75] |
Jiang B, Hailong S, Yuan J, et al. Identification of oncogenic long noncoding rna snhg12 and duxap8 in human bladder cancer through a comprehensive profiling analysis[J]. Biomed Pharmacother, 2018, 108:500-507.
|
[76] |
Li J, Wang AS, Wang S, et al. Lncsnhg14 promotes the development and progression of bladder cancer by targeting mirna-150-5p[J]. Eur Rev Med Pharmacol Sci, 2019, 23(3):1022-1029.
|
[77] |
Wang H, Feng Y, Zheng X, et al. The diagnostic and therapeutic role of snorna and lincrna in bladder cancer[J]. Cancers (Basel), 2023, 15(4):1007.
|
[78] |
Hu Y, Ma Z, He Y, et al. Lncrna-snhg1 contributes to gastric cancer cell proliferation by regulating dnmt1[J]. Biochem Biophys Res Commun, 2017, 491(4):926-931.
|
[79] |
Liu Y, Yang Y, Li L, et al. Lncrna snhg1 enhances cell proliferation, migration, and invasion in cervical cancer[J]. Biochem Cell Biol, 2018, 96(1):38-43.
|
[80] |
Du Q, Chen J. Snhg1 promotes proliferation, migration and invasion of bladder cancer cells via the pi3k/akt signaling pathway[J]. Exp Ther Med, 2020, 20(5):110.
|
[81] |
Min J, Ma J, Wang Q, et al. Long non-coding rna snhg1 promotes bladder cancer progression by upregulating ezh2 and repressing klf2 transcription[J]. Clinics (Sao Paulo), 2022, 77:100081.
|
[82] |
Feng R, Li Z, Wang X, et al. Silenced lncrna snhg14 restrains the biological behaviors of bladder cancer cells via regulating microrna-211-3p/esm1 axis[J]. Cancer Cell Int, 2021, 21(1):67.
|
[83] |
Mokhtar A, Kong C, Zhang Z, et al. Down-regulation lncrna-snhg15 contributes to proliferation and invasion of bladder cancer cells[J]. BMC Urol, 2021, 21(1):83.
|
[84] |
Chen W, Jiang T, Mao H, et al. Snhg16 regulates invasion and migration of bladder cancer through induction of epithelial-to-mesenchymal transition[J]. Hum Cell, 2020, 33(3):737-749.
|
[85] |
Cao X, Xu J, Yue D. Lncrna-snhg16 predicts poor prognosis and promotes tumor proliferation through epigenetically silencing p21 in bladder cancer[J]. Cancer Gene Ther, 2018, 25(1-2):10-17.
|
[86] |
Ke M, Sun N, Lin Z, et al. Snhg18 inhibits bladder cancer cell proliferation by increasing p21 transcription through destabilizing c-myc protein[J]. Cancer Cell Int, 2023, 23(1):48.
|
[87] |
Chamorro-Petronacci C, Perez-Sayans M, Padin-Iruegas ME, et al. Differential expression of snornas in oral squamous cell carcinomas: New potential diagnostic markers[J]. J Enzyme Inhib Med Chem, 2018, 33(1):424-427.
|
[88] |
Umu SU, Langseth H, Bucher-Johannessen C, et al. A comprehensive profile of circulating rnas in human serum[J]. RNA Biol, 2018, 15(2):242-250.
|
[89] |
Cao R, Ma B, Yuan L, et al. Small nucleolar rnas signature (snors) identified clinical outcome and prognosis of bladder cancer (blca)[J]. Cancer Cell Int, 2020, 20:299.
|
[90] |
He RQ, Huang ZG, Zhai GQ, et al. Small nucleolar rnas (snornas)-based risk score classifier predicts overall survival in bladder carcinoma[J]. Med Sci Monit, 2020, 26:e926273.
|
[91] |
Lu Q, Wang J, Tao Y, et al. Small cajal body-specific rna12 promotes carcinogenesis through modulating extracellular matrix signaling in bladder cancer[J]. Cancers (Basel), 2024, 16(3):483.
|