切换至 "中华医学电子期刊资源库"

中华老年病研究电子杂志 ›› 2023, Vol. 10 ›› Issue (04) : 47 -49. doi: 10.3877/cma.j.issn.2095-8757.2023.04.008

综述

高尿酸血症促进冠状动脉钙化的研究进展
龚小燕1, 陈庆伟1,()   
  1. 1. 400010 重庆,重庆医科大学附属第二医院全科医学科
  • 收稿日期:2023-10-01 出版日期:2023-11-28
  • 通信作者: 陈庆伟

The association between hyperuricemia and coronary artery calcification

Xiaoyan Gong1, Qingwei Chen1,()   

  1. 1. Department of General Practice, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
  • Received:2023-10-01 Published:2023-11-28
  • Corresponding author: Qingwei Chen
引用本文:

龚小燕, 陈庆伟. 高尿酸血症促进冠状动脉钙化的研究进展[J]. 中华老年病研究电子杂志, 2023, 10(04): 47-49.

Xiaoyan Gong, Qingwei Chen. The association between hyperuricemia and coronary artery calcification[J]. Chinese Journal of Geriatrics Research(Electronic Edition), 2023, 10(04): 47-49.

高尿酸血症是一种常见的代谢性疾病,其病理损伤并不局限于肾脏、关节等部位,可引起一系列全身性炎症反应。研究发现,高尿酸血症可能通过促进炎症反应、诱导氧化应激等促进冠状动脉钙化的发生和发展,且与高血压、糖尿病等冠心病危险因素相互影响,增加冠状动脉钙化的风险。在基因层面,孟德尔随机化研究也为高尿酸血症与冠状动脉疾病存在关联提供了新的证据。本文对高尿酸血症与冠状动脉钙化之间的关系进行综述,旨在厘清高尿酸血症影响冠状动脉钙化的可能机制,为冠状动脉钙化的防治和干预提供新的思路。

Hyperuricemia is a common metabolic disease, whose pathological damage is not limited to kidney, joint and other parts, but can cause a series of systemic inflammatory reactions. Studies have found that hyperuricemia may promote the occurrence and development of coronary artery calcification by promoting inflammatory response and inducing oxidative stress, and interact with coronary heart disease risk factors such as hypertension and diabetes to increase the risk of coronary artery calcification. At the genetic level, mendelian randomization studies have also provided new evidence for the association between hyperuricemia and coronary artery disease. This article reviews the relationship between hyperuricemia and coronary artery calcification, aiming to clarify the possible mechanism of hyperuricemia affecting coronary artery calcification, and provide new ideas for the prevention and treatment of coronary artery calcification.

[1]
Chen-Xu M, Yokose C, Rai SK, et al. Contemporary prevalence of gout and hyperuricemia in the United States and decadal trends: The National Health and Nutrition Examination Survey, 2007-2016[J]. Arthritis Rheumatol, 2019, 71(6):991-999.
[2]
Liu R, Han C, Wu D, et al. Prevalence of hyperuricemia and gout in mainland China from 2000 to 2014: A systematic review and meta-analysis[J]. Biomed Res Int, 2015, 2015:762820.
[3]
Li Y, Shen Z, Zhu B, et al. Demographic, regional and temporal trends of hyperuricemia epidemics in mainland China from 2000 to 2019: A systematic review and meta-analysis[J]. Glob Health Action, 2021, 14(1):1874652.
[4]
Jun JE, Lee YB, Lee SE, et al. Elevated serum uric acid predicts the development of moderate coronary artery calcification independent of conventional cardiovascular risk factors[J]. Atherosclerosis, 2018, 272:233-239.
[5]
Kiss LZ, Bagyura Z, Csobay-Novák C, et al. Serum uric acid is independently associated with coronary calcification in an asymptomatic population[J]. J Cardiovasc Transl Res, 2019, 12(3):204-210.
[6]
Liang L, Hou X, Bainey KR, et al. The association between hyperuricemia and coronary artery calcification development: A systematic review and meta-analysis[J]. Clin Cardiol, 2019, 42(11):1079-1086.
[7]
Wang X, Liu X, Qi Y, et al. High level of serum uric acid induced monocyte inflammation is related to coronary calcium deposition in the middle-aged and elder population of China: A five-year prospective cohort study[J]. J Inflamm Res, 2022, 15:1859-1872.
[8]
Luis-Rodríguez D, Donate-Correa J, Martín-Núñez E, et al. Serum urate is related to subclinical inflammation in asymptomatic hyperuricaemia[J]. Rheumatology (Oxford), 2021, 60(1):371-379.
[9]
Agrawal M, Niroula A, Cunin P, et al. TET2-mutant clonal hematopoiesis and risk of gout[J]. Blood, 2022,140(10):1094-1103.
[10]
Doğru S, Yaşar E, Yeşilkaya A. Uric acid can enhance MAPK pathway-mediated proliferation in rat primary vascular smooth muscle cells via controlling of mitochondria and caspase-dependent cell death[J]. J Recept Signal Transduct Res, 2022, 42(3):293-301.
[11]
Kimura Y, Yanagida T, Onda A, et al. Soluble uric acid promotes atherosclerosis via ampk (amp-activated protein kinase)-mediated inflammation[J]. Arterioscler Thromb Vasc Biol, 2020, 40(3):570-582.
[12]
Chen M, Lu X, Lu C, et al. Soluble uric acid increases PDZK1 and ABCG2 expression in human intestinal cell lines via the TLR4-NLRP3 inflammasome and PI3K/Akt signaling pathway[J]. Arthritis Res Ther, 2018,20(1):20.
[13]
Roumeliotis S, Roumeliotis A, Dounousi E, et al. Dietary antioxidant supplements and uric acid in chronic kidney disease: A review[J]. Nutrients, 2019, 11(8):1911.
[14]
Song C, Zhao X. Uric acid promotes oxidative stress and enhances vascular endothelial cell apoptosis in rats with middle cerebral artery occlusion[J]. Biosci Rep, 2018, 38(3):BSR20170939.
[15]
Borghi C, Rosei EA, Bardin T, et al. Serum uric acid and the risk of cardiovascular and renal disease[J]. J Hypertens, 2015, 33(9):1729-1741.
[16]
Yuan H, Yu C, Li X, et al. Serum uric acid levels and risk of metabolic syndrome: A dose-response meta-analysis of prospective studies[J]. J Clin Endocrinol Metab, 2015, 100(11):4198-4207.
[17]
Wang J, Qin T, Chen J, et al. Hyperuricemia and risk of incident hypertension: A systematic review and meta-analysis of observational studies[J/OL]. PLoS One, 2014, 9(12):e114259.
[18]
Lv Q, Meng XF, He FF, et al. High serum uric acid and increased risk of type 2 diabetes: A systemic review and meta-analysis of prospective cohort studies[J/OL]. PLoS One, 2013, 8(2):e56864.
[19]
Maloberti A, Biolcati M, Ruzzenenti G, et al. The role of uric acid in acute and chronic coronary syndromes[J]. J Clin Med, 2021,10(20):4750.
[20]
White J, Sofat R, Hemani G, et al. Plasma urate concentration and risk of coronary heart disease: A Mendelian randomisation analysis[J]. Lancet Diabetes Endocrinol, 2016, 4(4):327-336.
[21]
Kleber ME, Delgado G, Grammer TB, et al. Uric acid and cardiovascular events: A mendelian randomization study[J]. J Am Soc Nephrol, 2015, 26(11):2831-2838.
[22]
Borghi C, Domienik-Karłowicz J, Tykarski A, et al. Expert consensus for the diagnosis and treatment of patient with hyperuricemia and high cardiovascular risk: 2021 update[J]. Cardiol J, 2021, 28(1):1-14.
[1] 孙艺玮, 陈炜, 秦巍, 杜景辰, 孟昕, 周永军. 血管腔内介入治疗糖尿病足合并下肢动脉硬化闭塞症患者术后再狭窄与血清炎症因子的相关性[J]. 中华损伤与修复杂志(电子版), 2024, 19(01): 34-40.
[2] 刘盾, 潘晟. 不同入路腹腔镜袖状胃切除术用于肥胖症合并2型糖尿病的效果[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 150-154.
[3] 张琳, 李婷. CRIP1在胃癌中的表达及与临床病理指标和预后的关系研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 171-175.
[4] 张礼刚, 邹志辉, 许顺, 蔡可可, 胡永涛, 梁朝朝. 酒精对慢性非细菌性前列腺炎中T淋巴细胞变化的影响研究[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 74-81.
[5] 史亚波, 李扬, 黄长文. 缺血-再灌注损伤促进肝癌复发机制的研究进展[J]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 96-99.
[6] 蒋心怡, 顾丹丹, 叶艳, 缪佳蓉. RNA测序研究抗菌肽KT2治疗溃疡性结肠炎的作用机制[J]. 中华消化病与影像杂志(电子版), 2024, 14(01): 8-15.
[7] 吕涛, 张琨, 李晨. 芍黄安肠汤治疗重度活动期溃疡性结肠炎大肠湿热证患者的疗效及对肠黏膜屏障、炎症因子和免疫功能的影响[J]. 中华消化病与影像杂志(电子版), 2024, 14(01): 16-20.
[8] 王丽丽, 张春霞, 申磊, 吴立娜, 潘青, 冯雪. 吗替麦考酚酯联合雷公藤多苷及糖皮质激素治疗对IgA肾病患者肾功能、炎症因子和氧化应激的影响[J]. 中华临床医师杂志(电子版), 2023, 17(12): 1285-1290.
[9] 王卫峰, 刘维薇. 血清胰蛋白酶2在克罗恩病炎症程度评估中的价值[J]. 中华临床医师杂志(电子版), 2023, 17(12): 1304-1308.
[10] 云书荣, 王雅晳, 段莎莎, 施依璐, 张敏洁, 张小杉. 全外显子测序技术在先天性心脏病中的应用[J]. 中华临床医师杂志(电子版), 2023, 17(10): 1090-1096.
[11] 贺彬, 刘迅, 胡东辉. miR-107与恶性肿瘤的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(10): 1117-1122.
[12] 王丽芳, 宁武, 丁艳, 张彦霞, 马豆豆, 卢哲敏, 韩芃, 李超然, 王宽婷. 北京市石景山区中学生的血尿酸与血清25(OH)D3水平的相关性研究[J]. 中华临床医师杂志(电子版), 2023, 17(08): 865-869.
[13] 王飞飞, 王光林, 孟泽松, 李保坤, 曹龙飞, 张娟, 周超熙, 丁源一, 王贵英. 敲低IMPDH1对结肠癌SW480、HT29细胞生物功能的影响[J]. 中华临床医师杂志(电子版), 2023, 17(08): 884-890.
[14] 高红琴, 陈晨, 陆瑞科, 王小雨, 张敏, 李少华, 郝梨岚, 黄新程, 关凌耀, 张韵红. 外阴阴道假丝酵母菌病对女性阴道-宫颈菌群的影响研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 720-725.
[15] 张儒奇, 朱炳旭, 林子悦, 董晓婕, 张丽. 砭术临床应用古今文献研究[J]. 中华针灸电子杂志, 2024, 13(01): 30-35.
阅读次数
全文


摘要