[1] |
中华医学会消化病学分会胃肠动力学组,中华医学会消化病学分会功能性胃肠病协作组.中国慢性便秘专家共识意见(2019,广州)[J].中华消化杂志,2019,39(9):577-598.
|
[2] |
Mei Z, Xiao-Jiao Y, Hong-Ming Z, et al. Epidemiological study of elderly constipation in Beijing[J]. World J Gastroenterol, 2015, 21(47):13368-13373.
|
[3] |
杨直,吴晨曦,高静,等.中国成年人慢性便秘患病率的Meta分析[J].中国全科医学,2021,24(16):2092-2097.
|
[4] |
Chu H, Zhong L, Li H, et al. Epidemiology characteristics of constipation for general population, pediatric population, and elderly population in china[J]. Gastroenterol Res Pract, 2014, 2014:532734.
|
[5] |
Du X, Liu S, Jia P, et al. Epidemiology of constipation in elderly people in parts of China: A multicenter study[J]. Front Public Health, 2022, 10:823987.
|
[6] |
史佳强,郑松柏.老年人慢性便秘危害的研究进展[J].老年医学与保健,2022,28(5):1157-1160.
|
[7] |
黄毕林,方中良,方向,等.老年慢性便秘患者营养和焦虑抑郁状态及认知功能分析[J].中国临床保健杂志,2022,25(2):190-194.
|
[8] |
Aziz I, Whitehead WE, Palsson OS, et al. An approach to the diagnosis and management of Rome IV functional disorders of chronic constipation[J]. Expert Rev Gastroenterol Hepatol, 2020, 14(1):39-46.
|
[9] |
Palsson OS, Whitehead WE, van Tilburg MA, et al. Rome IV diagnostic questionnaires and tables for investigators and clinicians[J]. Gastroenterology, 2016:S0016-5085(16)00180-00183[pii].
|
[10] |
Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography[J]. Nature, 2012, 486(7402):222-227.
|
[11] |
Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body[J/OL]. PLoS Biol, 2016, 14(8):e1002533.
|
[12] |
Schloissnig S, Arumugam M, Sunagawa S, et al. Genomic variation landscape of the human gut microbiome[J]. Nature, 2013, 493(7430):45-50.
|
[13] |
Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome[J]. Nature, 2011, 473(7346):174-180.
|
[14] |
Lv M, Zhang J, Deng J, et al. Analysis of the relationship between the gut microbiota enterotypes and colorectal adenoma[J]. Front Microbiol, 2023, 14:1097892.
|
[15] |
周鲁宁,傅志良,尚庆森,等.一种基于肠道菌群肠型特征的膳食纤维组合物及其制备方法与应用:中国,CN115777949A[P].2023-03-14.
|
[16] |
Mangiola F, Nicoletti A, Gasbarrini A, et al. Gut microbiota and aging[J]. Eur Rev Med Pharmacol Sci, 2018, 22(21):7404-7413.
|
[17] |
Claesson MJ, Cusack S, O'Sullivan O, et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly[J]. Proc Natl Acad Sci U S A, 2011,108(Suppl 1):4586-4591.
|
[18] |
Ghosh TS, Das M, Jeffery IB, et al. Adjusting for age improves identification of gut microbiome alterations in multiple diseases[J/OL]. Elife, 2020, 9:e50240.
|
[19] |
Biagi E, Franceschi C, Rampelli S, et al. Gut microbiota and extreme longevity[J]. Curr Biol, 2016, 26(11):1480-1485.
|
[20] |
Arboleya S, Watkins C, Stanton C, et al. Gut bifidobacteria populations in human health and aging[J]. Front Microbiol, 2016, 7:1204.
|
[21] |
余英.老年性便秘与肠道菌群失调的相关性及药物干预性研究[J].胃肠病学和肝病学杂志,2010,19(12):1133-1135.
|
[22] |
Jocken JWE, González Hernández MA, Hoebers NTH, et al. Short-chain fatty acids differentially affect intracellular lipolysis in a human white adipocyte model[J]. Front Endocrinol (Lausanne), 2017, 8:372.
|
[23] |
Agus A, Clément K, Sokol H. Gut microbiota-derived metabolites as central regulators in metabolic disorders[J]. Gut, 2021, 70(6):1174-1182.
|
[24] |
Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity[J]. Nat Rev Immunol, 2016, 16(6):341-352.
|
[25] |
Takiishi T, Fenero C, Câmara N. Intestinal barrier and gut microbiota: Shaping our immune responses throughout life[J]. Tissue Barriers, 2017, 5(4):e1373208.
|
[26] |
Kamada N, Seo SU, Chen GY, et al. Role of the gut microbiota in immunity and inflammatory disease[J]. Nat Rev Immunol, 2013, 13(5):321-335.
|
[27] |
Mousa WK, Athar B, Merwin NJ, et al. Antibiotics and specialized metabolites from the human microbiota[J]. Nat Prod Rep, 2017, 34(11):1302-1331.
|
[28] |
Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, et al. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis[J]. Cell, 2004, 118(2):229-241.
|
[29] |
Stappenbeck TS, Hooper LV, Gordon JI. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells[J]. Proc Natl Acad Sci U S A, 2002, 99(24):15451-15455.
|
[30] |
Cryan JF, O'Riordan KJ, Cowan CSM, et al. The microbiota-gut-brain axis[J]. Physiol Rev, 2019, 99(4):1877-2013.
|
[31] |
Martin CR, Osadchiy V, Kalani A, et al. The brain-gut-microbiome axis[J]. Cell Mol Gastroenterol Hepatol, 2018, 6(2):133-148.
|
[32] |
Podlesny D, Fricke WF. Strain inheritance and neonatal gut microbiota development: A meta-analysis[J]. Int J Med Microbiol, 2021, 311(3):151483.
|
[33] |
Ghosh TS, Rampelli S, Jeffery IB, et al. Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: The NU-AGE 1-year dietary intervention across five European countries[J]. Gut, 2020, 69(7):1218-1228.
|
[34] |
Yuan G, Wen S, Zhong X, et al. Inulin alleviates offspring asthma by altering maternal intestinal microbiome composition to increase short-chain fatty acids[J/OL]. PLoS One, 2023, 18(4):e0283105.
|
[35] |
郭航.拟杆菌和双歧杆菌对抗生素破坏后肠道菌群重建的影响[D].无锡:江南大学,2023.
|
[36] |
黄林生,高仁元,严雪冰,等.慢性功能性便秘患者的肠道菌群分析[J/OL].中华结直肠疾病电子杂志,2017,6(2):121-126.
|
[37] |
Guo M, Yao J, Yang F, et al. The composition of intestinal microbiota and its association with functional constipation of the elderly patients[J]. Future Microbiol, 2020, 15:163-175.
|
[38] |
赵迪.基于代谢组学和肠道微生物组学的便秘与衰老的相关性研究[D].太原:山西大学,2021.
|
[39] |
Tian H, Chen Q, Yang B, et al. Analysis of gut microbiome and metabolite characteristics in patients with slow transit constipation[J]. Dig Dis Sci, 2021, 66(9):3026-3035.
|
[40] |
李菁,邹晓平,王钟晗,等.老年慢性便秘患者肠道菌群结构特点的研究[J].胃肠病学,2021,26(5):274-278.
|
[41] |
Wang J, Wang L, Yu Q, et al. Characteristics of the gut microbiome and serum metabolome in patients with functional constipation[J]. Nutrients, 2023, 15(7):1779.
|
[42] |
Yarullina DR, Shafigullin MU, Sakulin KA, et al. Characterization of gut contractility and microbiota in patients with severe chronic constipation[J/OL]. PLoS One, 2020, 15(7):e0235985.
|
[43] |
Tan J, McKenzie C, Potamitis M, et al. The role of short-chain fatty acids in health and disease[J]. Adv Immunol, 2014, 121:91-119.
|
[44] |
Huang XZ, Li ZR, Zhu LB, et al. Inhibition of p38 mitogen-activated protein kinase attenuates butyrate-induced intestinal barrier impairment in a Caco-2 cell monolayer model[J]. J Pediatr Gastroenterol Nutr, 2014, 59(2):264-269.
|
[45] |
Calderon G, Patel C, Camilleri M, et al. Associations of habitual dietary intake with fecal short-chain fatty acids and bowel functions in irritable bowel syndrome[J]. J Clin Gastroenterol, 2022, 56(3):234-242.
|
[46] |
Vieira-Silva S, Falony G, Darzi Y, et al. Species-function relationships shape ecological properties of the human gut microbiome[J]. Nat Microbiol, 2016, 1(8):16088.
|
[47] |
Pimentel M, Lin HC, Enayati P, et al. Methane, a gas produced by enteric bacteria, slows intestinal transit and augments small intestinal contractile activity[J]. Am J Physiol Gastrointest Liver Physiol, 2006, 290(6):G1089-1095.
|
[48] |
Suri J, Kataria R, Malik Z, et al. Elevated methane levels in small intestinal bacterial overgrowth suggests delayed small bowel and colonic transit[J/OL]. Medicine (Baltimore), 2018, 97(21):e10554.
|
[49] |
Parkar N, Dalziel JE, Spencer NJ, et al. Slowed gastrointestinal transit is associated with an altered caecal microbiota in an aged rat model[J]. Front Cell Infect Microbiol, 2023, 13:1139152.
|
[50] |
Liang J, Zhao Y, Xi Y, et al. Association between depression, anxiety symptoms and gut microbiota in Chinese elderly with functional constipation[J]. Nutrients, 2022, 14(23):5013.
|
[51] |
Müller-Lissner SA, Fumagalli I, Bardhan KD, et al. Tegaserod, a 5-HT(4) receptor partial agonist, relieves symptoms in irritable bowel syndrome patients with abdominal pain, bloating and constipation[J]. Aliment Pharmacol Ther, 2001, 15(10):1655-1666.
|
[52] |
Kim CS, Cha L, Sim M, et al. Probiotic supplementation improves cognitive function and mood with changes in gut microbiota in community-dwelling older adults: A randomized, double-blind, placebo-controlled, multicenter trial[J]. J Gerontol A Biol Sci Med Sci, 2021, 76(1):32-40.
|
[53] |
Zhang C, Jiang J, Tian F, et al. Meta-analysis of randomized controlled trials of the effects of probiotics on functional constipation in adults[J]. Clin Nutr, 2020, 39(10):2960-2969.
|
[54] |
Takeda T, Asaoka D, Nojiri S, et al. Usefulness of bifidobacterium longum BB536 in elderly individuals with chronic constipation: A randomized controlled trial[J]. Am J Gastroenterol, 2023, 118(3):561-568.
|
[55] |
Surakka Anu, Kajander K, Rajilic M, et al. Yoghurt containing galactooligosaccharides facilitates defecation among elderly subjects and selectively increases the number of Bifidobacteria[J]. Int J Prob Preb, 2009, 4(1):65-74.
|
[56] |
Miyoshi M, Shiroto A, Kadoguchi H, et al. Prebiotics improved the defecation status via changes in the microbiota and short-chain fatty acids in hemodialysis patients[J]. Kobe J Med Sci, 2020, 66(1):E12-E21.
|
[57] |
Lydia A, Indra TA, Rizka A, et al. The effects of synbiotics on indoxyl sulphate level, constipation, and quality of life associated with constipation in chronic haemodialysis patients: A randomized controlled trial[J]. BMC Nephrol, 2022, 23(1):259.
|
[58] |
Oh JH, Jang YS, Kang D, et al. Efficacy of a synbiotic containing Lactobacillus paracasei DKGF1 and opuntia humifusa in elderly patients with irritable bowel syndrome: A randomized, double-blind, placebo-controlled trial[J]. Gut Liver, 2023, 17(1):100-107.
|
[59] |
Valentini Neto J, Chella TP, Rudnik DP, et al. Effects of synbiotic supplementation on gut functioning and systemic inflammation of community-dwelling elders - secondary analyses from a randomized clinical trial[J]. Arq Gastroenterol, 2020, 57(1):24-30.
|
[60] |
Ghoshal UC, Srivastava D, Misra A. A randomized double-blind placebo-controlled trial showing rifaximin to improve constipation by reducing methane production and accelerating colon transit: A pilot study[J]. Indian J Gastroenterol, 2018, 37(5):416-423.
|
[61] |
Zeber-Lubecka N, Kulecka M, Ambrozkiewicz F, et al. Limited prolonged effects of rifaximin treatment on irritable bowel syndrome-related differences in the fecal microbiome and metabolome[J]. Gut Microbes, 2016, 7(5):397-413.
|
[62] |
Li H, Xiang Y, Zhu Z, et al. Rifaximin-mediated gut microbiota regulation modulates the function of microglia and protects against CUMS-induced depression-like behaviors in adolescent rat[J]. J Neuroinflammation, 2021, 18(1):254.
|
[63] |
Kuai XY, Yao XH, Xu LJ, et al. Evaluation of fecal microbiota transplantation in Parkinson's disease patients with constipation[J]. Microb Cell Fact, 2021, 20(1):98.
|
[64] |
Ohara T. Identification of the microbial diversity after fecal microbiota transplantation therapy for chronic intractable constipation using 16s rRNA amplicon sequencing[J/OL]. PLoS One, 2019, 14(3):e0214085.
|
[65] |
Fang S, Wu S, Ji L, et al. The combined therapy of fecal microbiota transplantation and laxatives for functional constipation in adults: A systematic review and meta-analysis of randomized controlled trials[J/OL]. Medicine (Baltimore), 2021, 100(14):e25390.
|
[66] |
Saha S, Mara K, Pardi DS, et al. Long-term safety of fecal microbiota transplantation for recurrent Clostridioides difficile infection[J]. Gastroenterology, 2021, 160(6):1961-1969.e3.
|