切换至 "中华医学电子期刊资源库"

中华老年病研究电子杂志 ›› 2022, Vol. 09 ›› Issue (04) : 1 -5. doi: 10.3877/cma.j.issn.2095-8757.2022.04.001

临床研究

老年脓毒症患者短期预后的早期预测研究
王宇1, 韩敏1, 郭瑞敏1, 秦熠1, 牛开亚1, 宋娟1, 陈鹏1, 邹亚1, 孙燕妮1,()   
  1. 1. 200333 上海市普陀区中心医院急诊内科
  • 收稿日期:2022-06-19 出版日期:2022-11-28
  • 通信作者: 孙燕妮

Early prediction of short-term prognosis in elderly patients with sepsis

Yu Wang1, Min Han1, Ruimin Guo1, Yi Qin1, Kaiye Niu1, Juan Song1, Peng Chen1, Ya Zou1, Yanni Sun1,()   

  1. 1. Emergency Department, Shanghai Putuo District Central Hospital, Shanghai 200333, China
  • Received:2022-06-19 Published:2022-11-28
  • Corresponding author: Yanni Sun
引用本文:

王宇, 韩敏, 郭瑞敏, 秦熠, 牛开亚, 宋娟, 陈鹏, 邹亚, 孙燕妮. 老年脓毒症患者短期预后的早期预测研究[J/OL]. 中华老年病研究电子杂志, 2022, 09(04): 1-5.

Yu Wang, Min Han, Ruimin Guo, Yi Qin, Kaiye Niu, Juan Song, Peng Chen, Ya Zou, Yanni Sun. Early prediction of short-term prognosis in elderly patients with sepsis[J/OL]. Chinese Journal of Geriatrics Research(Electronic Edition), 2022, 09(04): 1-5.

目的

探讨影响老年脓毒症患者短期预后的影响因素,并评估其预测患者28 d预后的价值。

方法

选取2018年1月至2020年1月上海市普陀区中心医院收治的112例老年脓毒症患者的临床资料。根据患者28 d转归情况分为死亡组和存活组。采用Cox比例风险回归模型分析影响患者预后的因素,受试者工作特征(ROC)曲线评估各指标对老年脓毒症患者28 d病死率的预测价值。

结果

存活组52例,死亡组60例。Cox比例回归风险分析结果显示,年龄、乳酸水平、尿酸碱度和前白蛋白水平是影响老年脓毒症患者短期预后的独立影响因素(RR=1.035、1.270、0.332、0.000,P<0.05或0.01)。ROC曲线分析结果显示,各单项指标中,乳酸的预测价值最高,曲线下面积(AUC)为0.836,敏感度和特异度分别为90%和81%;乳酸联合其他各项指标联合预测的AUC为0.907,敏感度和特异度分别为85%和88%。

结论

年龄、乳酸、尿酸碱度、前白蛋白是老年脓毒症患者死亡的独立影响因素,联合4项指标可以更准确地预测患者28 d预后情况。

Objective

To explore the influencing factors for short-term prognosis of elderly patients with sepsis, and to evaluate their value in predicting 28 day prognosis.

Methods

Clinical data of 112 elderly patients with sepsis admitted to the Emergency Department of Shanghai Putuo District Central Hospital from January 2018 to January 2020 were retrospectively analyzed. The patients were divided into the death group and survival group according to the 28-day outcome. Cox proportional hazard regression model was used to analyze the factors influencing the prognosis of patients, and receiver operating characteristic (ROC) curve was used to evaluate the predictive value of the influencing factors on the 28 day outcome of patients.

Results

There were 52 patients in the survival group and 60 in the death group. Cox proportional hazard regression analysis showed that age, lactic acid level, urine pH value and prealbumin level were independent influencing factors for short-term prognosis of elderly patients with sepsis (RR=1.035, 1.270, 0.332, 0.000; P < 0.05 or P < 0.01). ROC curve analysis showed that lactic acid level had the highest predictive value compared with age, urine pH value and prealbumin level, with the area under the curve (AUC) of 0.836, sensitivity and specificity of 90% and 81%, respectively; while when predicted using lactic acid level combined with age, urine pH value and prealbumin level, the AUC increased to 0.907, and the sensitivity and specificity were 85% and 88%, respectively.

Conclusion

Age, lactic acid level, urine pH value and prealbumin level are independent influencing factors for short-term prognosis of elderly patients with sepsis, and combined used of these indicators can accurately predict the 28 day prognosis of patients.

表1 存活组与死亡组一般情况的比较[例(%)或MQ1Q3)或±s]
表2 存活组与死亡组实验室检测结果的比较[±sMQ1Q3)]
组别 例数 白细胞计数(×109/L) 血小板计数(×109/L) 红细胞压积(%) 血红蛋白(g/L) 血小板分布宽度(%) 降钙素原(ng/ml) APTT(s)
存活组 52 8.25(6.08,12.13) 163.0(110.0,255.5) 35.51(29.58,38.67) 115±22 13.3±2.6 0.41(0.18,3.09) 39.0(32.5,46.0)
死亡组 60 13.20(10.03,18.71) 159.0(101.5,244.8) 30.20(26.62,35.78) 100±26 14.5±3.0 1.14(0.24,13.0) 38.0(29.0,43.7)
检验值 Z=-3.749 Z=-0.476 Z=-2.643 t=-2.921 t=-2.311 Z=-1.636 Z=-1.020
P <0.01 >0.05 <0.01 <0.01 <0.05 >0.05 >0.05
组别 例数 白球比 前白蛋白(mg/L) 尿素氮(mmol/L) 肌酐(μmol/L) D-二聚体(mg/L) PT(s) INR
存活组 52 1.06±0.22 0.14±0.05 112.86(56.27,253.04) 84.0(65.0,120.0) 1.58(0.84,2.80) 14.1(12.7,15.3) 1.10(1.04,1.19)
死亡组 60 0.91±0.25 0.08±0.05 206.73(85.43,495.13) 101.0(68.5,203.5) 5.01(3.59,7.37) 15.2(13.6.17.0) 1.26(1.11,1.37)
检验值 t=-3.379 t=-4.271 Z=-4.433 Z=-1.689 Z=-6.645 Z=-2.980 Z=-4.288
P <0.01 <0.01 <0.01 >0.05 <0.01 <0.01 <0.01
组别 例数 肌红蛋白(μg/L) 肌钙蛋白(μg/L) 尿酸碱度 尿比重 乳酸(mmol/L) 总胆红素(μmol/L)
存活组 52 100.05(59.41,217.32) 0.04(0.01,0.13) 6.0(5.0,6.0) 1.013(1.010,1.017) 1.50(1.50,1.50) 13.0(11.0,23.0)
死亡组 60 267.26(85.43,495.13) 0.13(0.04.0.46) 5.0(5.0,5.5) 1.015(1.010,1.021) 2.35(1.82,3.87) 14.5(9.0,33.0)
检验值 Z=-3.889 Z=-3.683 Z=-4.439 Z=-2.006 Z=-6.223 Z=-0.038
P <0.01 <0.01 <0.01 <0.05 <0.01 >0.05
表3 老年脓毒症患者短期预后影响因素的COX回归分析结果
图1 老年脓毒症患者28 d预后预测的受试者工作特征曲线
表4 预测老年脓毒症患者28 d预后的ROC曲线分析结果
[1]
Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021[J/OL]. Intensive Care Med, DOI: 10.1007/s00134-021-06506-y.
[2]
ROWE TA, Mckoy JM. Sepsis in older adults[J]. Infect Dis Clin Norh AM, 2017, 31(4):731-742.
[3]
贺小丽,李德渊,乔莉娜,等.脓毒症流行病学及预后的研究进展[J].中华危重病急救医学201830(5):486-489.
[4]
Somogyi D, Sheridan C. Recent advances in bedside device-based early detection of sepsis[J]. J Intensive Care Med, 2022, 37(7):849-856.
[5]
Dou QL, Lee CC. Dynamic changes in heparin-binding protein as a prognostic biomarker for 30-day mortality in sepsis patients in the intensive care unit[J]. Sci Rep, 2022, 12(1):10751.
[6]
Su X, Han S. Efficacy of alanyl glutamine in nutritional support therapy for patients with sepsis: A protocol for systematic review and meta-analysis[J]. Medicine, 2021, 100(11):e24861.
[7]
Loftus TJ, Brakenridge SC. Characterization of hypoalbuminemia following temporary abdominal closure[J]. J Trauma Acute Care, 2017, 83(4):650-656.
[8]
Hisamuddin NA, Azlan K. The use of laboratory and physiological parameters in predicting mortality in sepsis induced hypotension and septic shock patients attending the emergency department[J]. Med J Malaysia, 2012, 67(3):259-264.
[9]
Kramer A, Bernhard M. Lactate in emergency medicine[J]. Anaesthesist, 2020, 69(11):826-834.
[10]
Hargreaves DS, Hodgson LE. Persistently elevated early warning scores and lactate identifies patients at high risk of mortality in suspected sepsis[J]. Eur J Emerg Med, 2020, 27(2):125-131.
[11]
Cheng V, Inaba K, Haltmeier T, et al. Serum transthyretin is a predictor of clinical outcomes in critically ill trauma patients[J]. Surgery, 2015, 158(2):438-444.
[12]
Haltmeier T, Inaba K, Durso J, et al. Transthyretin at admission and over time as a marker for clinical outcomes in critically ill trauma patients: A prospective single-center study[J]. World J Surg, 2020, 44(1):115-123.
[13]
Maalouf NM, Sakhaee K, Parks JH, et al. Association of urinary pH with body weight in nephrolithiasis[J]. Kidney Int, 2004, 65:1422-1425.
[14]
Hara S, Tsuji H, Ohmoto Y, et al. High serum uric acid level and low urine pH as predictors of metabolic syndrome: A retrospective cohort study in a Japanese urban population[J]. Metabolism, 2012, 61:281-288.
[15]
Okamura T, Hashimoto Y, Hamaguchi M, et al. Low urine pH is a risk for non-alcoholic fatty liver disease: A population-based longitudinal study[J]. Clin Res Hepatol Gastroenterol, 2018, 42(6):570-576.
[16]
Miki A, Hashimoto Y, Tanaka M, et al. Urinary pH reflflects dietary acid load in patients with type 2 diabetes[J]. J Clin Biochem Nutr, 2017, 61:74-77.
[17]
Hashimoto Y, Hamaguchi M, Nakanishi N, et al. Urinary pH is a predictor of diabetes in men; a population based large scale cohort study[J]. Diabetes Res Clin Pract, 2017, 130:9-14.
[18]
Yoshida1 S, Miyake1 T. The relationship between urine pH and abnormal glucose tolerance in a community-based study[J]. J Diabetes Investig, 2018, 9(4):769-775.
[19]
Pierrakos C, Velissaris D, Bisdorff M, et al. Biomarkers of sepsis: Time for a reappraisal[J]. Crit Care, 2020, 24(1):287.
[20]
Na C, Hongwei Z, Zhi C, et al. Prognostic signifi-cance of PCT and CRP evaluation for adult ICU patients with sepsis and septic shock: Retrospective analysis of 59 cases[J]. J Int Med Res, 2019, 47(4):1573-1579.
[21]
Karakike E, Kyriazopoulou E, Tsangaris I, et al. The early change of s0FA score as a prognostic marker of 28-day sepsis mortality: Analysis through a derivation and a validation cohort[J]. Crit Care, 2019, 23(1):387.
[22]
Yang J, Liu W, Xu M, et al. Long non-coding RNACRNDE and toll-like receptor 3 correlate with disease severity, inflammation, and mortality in sepsis[J]. J Clin Lab Anal, 2020, 34(9):e23360.
[23]
Zhi D, Zhang M, Lin J, et al. Establishment and validation of the predictive model for the in-hospital death in patients with sepsis[J]. Am J Infect Control, 2021, 49(12):1515-1521.
[1] 许杰, 李亚俊, 韩军伟. 两种入路下腹腔镜根治性全胃切除术治疗超重胃癌的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 19-22.
[2] 奚玲, 仝瀚文, 缪骥, 毛永欢, 沈晓菲, 杜峻峰, 刘晔. 基于肌少症构建的造口旁疝危险因素预测模型[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 48-51.
[3] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[4] 李代勤, 刘佩杰. 动态增强磁共振评估中晚期低位直肠癌同步放化疗后疗效及预后的价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 100-103.
[5] 李伟, 宋子健, 赖衍成, 周睿, 吴涵, 邓龙昕, 陈锐. 人工智能应用于前列腺癌患者预后预测的研究现状及展望[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 541-546.
[6] 屈勤芳, 束方莲. 盆腔器官脱垂患者盆底重建手术后压力性尿失禁发生的影响因素及列线图预测模型构建[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 606-612.
[7] 公宇, 廖媛, 尚梅. 肝细胞癌TACE术后复发影响因素及预测模型建立[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 818-824.
[8] 陈宗杰, 胡添松. 肝外伤破裂患者治疗后胆漏发生影响因素分析[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 836-840.
[9] 关小玲, 周文营, 陈洪平. PTAAR在乙肝相关慢加急性肝衰竭患者短期预后中的预测价值[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 841-845.
[10] 张润锦, 阳盼, 林燕斯, 刘尊龙, 刘建平, 金小岩. EB病毒相关胆管癌伴多发转移一例及国内文献复习[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 865-869.
[11] 陈晓鹏, 王佳妮, 练庆海, 杨九妹. 肝细胞癌VOPP1表达及其与预后的关系[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 876-882.
[12] 王景明, 王磊, 许小多, 邢文强, 张兆岩, 黄伟敏. 腰椎椎旁肌的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 846-852.
[13] 韦巧玲, 黄妍, 赵昌, 宋庆峰, 陈祖毅, 黄莹, 蒙嫦, 黄靖. 肝癌微波消融术后中重度疼痛风险预测列线图模型构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 715-721.
[14] 蔡晓雯, 李慧景, 丘婕, 杨翼帆, 吴素贤, 林玉彤, 何秋娜. 肝癌患者肝动脉化疗栓塞术后疼痛风险预测模型的构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 722-728.
[15] 王誉英, 刘世伟, 王睿, 曾娅玲, 涂禧慧, 张蒲蓉. 老年乳腺癌新辅助治疗病理完全缓解的预测因素分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 641-646.
阅读次数
全文


摘要