切换至 "中华医学电子期刊资源库"

中华老年病研究电子杂志 ›› 2021, Vol. 08 ›› Issue (03) : 24 -29. doi: 10.3877/cma.j.issn.2095-8757.2021.03.006

论著

静压力下缺氧诱导因子-1α信号通路对髁突软骨细胞增殖与凋亡的调控作用
徐高丽1, 张建兴1, 周健2, 沈文俊1, 谷志远2, 徐国超1,()   
  1. 1. 310013 杭州,浙江医院口腔科
    2. 310053 杭州,浙江中医药大学口腔医学院
  • 收稿日期:2021-05-04 出版日期:2021-08-28
  • 通信作者: 徐国超
  • 基金资助:
    浙江省科技计划项目(2021C04013); 浙江省医药卫生科技计划项目(2021446434); 国家留学基金项目(201808330467)

Regulation of HIF-1α signaling pathway on proliferation and apoptosis of condylar chondrocytes under static pressure

Gaoli Xu1, Jianxing Zhang1, Jian Zhou2, Wenjun Shen1, Zhiyuan Gu2, Guochao Xu1,()   

  1. 1. Department of Stomatology, Zhejiang Hospital, Hangzhou 310013, Zhejiang Province, China
    2. School of Stomatology, Zhejiang Chinese Medical University, Hangzhou 310053, China
  • Received:2021-05-04 Published:2021-08-28
  • Corresponding author: Guochao Xu
引用本文:

徐高丽, 张建兴, 周健, 沈文俊, 谷志远, 徐国超. 静压力下缺氧诱导因子-1α信号通路对髁突软骨细胞增殖与凋亡的调控作用[J/OL]. 中华老年病研究电子杂志, 2021, 08(03): 24-29.

Gaoli Xu, Jianxing Zhang, Jian Zhou, Wenjun Shen, Zhiyuan Gu, Guochao Xu. Regulation of HIF-1α signaling pathway on proliferation and apoptosis of condylar chondrocytes under static pressure[J/OL]. Chinese Journal of Geriatrics Research(Electronic Edition), 2021, 08(03): 24-29.

目的

探讨不同时间静压力下缺氧诱导因子-1α(hypoxia-inducible factor-1α, HIF-1α)信号通路对髁突软骨细胞增殖与凋亡的调控作用。

方法

体外分离、培养髁突软骨细胞,取第三代进行实验。采用200 kPa静压力对髁突软骨细胞进行0、1、2、4、8、12 h的加压,在不同加压时点获取细胞样本后用CCK-8法检测细胞增殖情况,流式细胞技术检测细胞凋亡情况,Western Blot及qRT-PCR检测髁突软骨细胞HIF-1α、血管内皮生长因子(vascular endothelial growth factor, VEGF)及Ⅱ型胶原蛋白(collagen type Ⅱ, COLⅡ)蛋白和mRNA的表达情况。不同时点计量资料的比较采用单因素方差分析。

结果

随着加压时间的延长,髁突软骨细胞的增殖和凋亡总体均呈上升趋势,其中各时点增殖的差异有统计学意义(F=5.336,P<0.01),加压8、12 h后髁突软骨细胞的增殖均明显强于加压前(P<0.05或0.01),各时点凋亡的差异无统计学意义(F=12.175,P>0.05)。随着加压时间的延长,髁突软骨细胞HIF-1α、VEGF、COLⅡ蛋白和mRNA的表达均呈先上升后下降趋势,不同时点表达水平的差异均有统计学意义(F=21.330、41.710、12.960,15.880、85.390、35.210;P<0.01);加压后各时点HIF-1α、VEGF、COLⅡ蛋白的表达较之加压前均发生明显变化(P<0.05或0.01),大部分时点HIF-1α、VEGF、COLⅡ mRNA的表达较之加压前均发生明显变化(P<0.05或0.01),其中加压4 h后HIF-1α、VEGF、COLⅡ蛋白和mRNA的表达均达到最高点。

结论

适宜大小的力学刺激能促进髁突软骨细胞的增殖及细胞外基质合成,HIF-1α信号通路可能参与了髁突软骨细胞力学信号的传递。

Objective

To investigate the regulation of HIF-1α signaling pathway on proliferation and apoptosis of condylar chondrocytes under different time static pressure.

Methods

Condylar chondrocytes were isolated and cultured in vitro, and the third generation was used for experiment. Condylar chondrocytes were pressurized at 0, 1, 2, 4, 8 and 12 h under static pressure of 200 kPa. Cell samples were obtained at different pressurization time points and cell proliferation was detected by CCK-8 method and cell apoptosis was detected by flow cytometry. The expressions of HIF-1α, VEGF and COLⅡ protein and mRNA in condylar chondrocytes were detected by Western Blot and QRT-PCR. The measurement data at different time points were compared by one-way ANOVA.

Results

With the extension of pressurization time, the proliferation and apoptosis of condylar chondrocytes generally increased, and the difference of proliferation at each time point was statistically significant (F=5.336, P < 0.01). The proliferation of condylar chondrocytes was significantly enhanced after 8 and 12 h of compression (P < 0.05 or 0.01). The expressions of HIF-1α, VEGF and COLⅡ protein and mRNA in condylar chondrocytes increased firstly and then decreased with increasing pressure time, and the differences of expression levels at different time points were statistically significant (F=21.330, 41.710, 12.960, 15.880, 85.390, 35.210; P < 0.01). The expressions of HIF-1α, VEGF and COLⅡ protein were significantly changed at each time point after compression (P < 0.05 or 0.01), and the expressions of HIF-1α, VEGF and COLⅡ mRNA were significantly changed at most of the time points after compression (P < 0.05 or 0.01). The protein and mRNA expressions of HIF-1α, VEGF and COLⅡ reached the highest after 4 h of compression.

Conclusion

Appropriate mechanical stimulation can promote the proliferation and extracellular matrix synthesis of condylar chondrocytes, and HIF-1α signaling pathway may be involved in the transmission of mechanical signals of condylar chondrocytes.

表1 PCR引物序列及预扩增长度
图1 髁突软骨细胞甲苯胺蓝染色镜下所见(×100)
图2 髁突软骨细胞COLⅡ免疫组织化学染色镜下所见(×200)
图3 200 kPa静压力加载前后髁突软骨细胞的增殖情况
图4 200 kPa静压力加载前后髁突软骨细胞的凋亡情况
表2 不同时间点静压力加载后髁突软骨细胞HIF-1α、VEGF和COLⅡ的表达情况(±s
表3 不同时间点静压力加载后髁突软骨细胞HIF-1α、VEGF和COLⅡ的表达情况(±s
[1]
Franklin M, Sperry MM, Phillips E, et al. Painful temporomandibular joint overloading induces structural remodeling in the pericellular matrix of that joint's chondrocytes[J]. J Orthop Res, 2021, doi:10.1002/jor.25050.
[2]
徐高丽,肖芳,霍光.颞下颌关节盘移位后关节的适应性改建[J].口腔颌面外科志201626(1): 61-64.
[3]
Li B, Guan G, Mei L, et al. Pathological mechanism of chondrocytes and the surrounding environment during osteoarthritis of temporomandibular joint[J]. J Cell Mol Med, 2021, 25(11):4902-4911.
[4]
Fang L, Ye Y, Tan X, et al. Overloading stress-induced progressive degeneration and self-repair in condylar cartilage[J]. Ann N Y Acad Sci, 2021, doi: 10.1111/nyas.14606.
[5]
Lekvijittada K, Hosomichi J, Maeda H, et al. Intermittent hypoxia inhibits mandibular cartilage growth with reduced TGF-β and SOX9 expressions in neonatal rats[J]. Sci Rep, 2021, 11(1):1-12.
[6]
Feng Y, Hu S, Liu L, et al. HMGB1 contributes to osteoarthritis of temporomandibular joint by inducing synovial angiogenesis[J]. J Oral Rehabil, 2021, 48(5):551-559.
[7]
徐高丽,吴立立,谷志远,等.缺氧诱导因子-1α信号通路在髁突软骨生长和改建中的作用机制[J].华西口腔医学杂志201634(6): 639-642.
[8]
Kierans SJ, Taylor CT. Regulation of glycolysis by the hypoxia-inducible factor (HIF): Implications for cellular physiology[J]. J Physiol, 2021, 599(1):23-37.
[9]
Fu L, Zhang LW, Zhang X, et al. Roles of oxygen level and hypoxia-inducible factor signaling pathway in cartilage, bone and osteochondral tissue engineering[J]. Biomed Mater, 2021, 16(2):022006.
[10]
Mohammadi B, Esmaeilizade Z, Omrani MD, et al. The effect of co-treating human mesenchymal stem cells with epigallocatechin gallate and hypoxia inducible factor-1 on the expression of RANKL/RANK/OPG signaling pathway, osteogenesis, and angiogenesis genes[J]. Regen Eng Transl Med, 2021, doi:10.1007/s40883-021-00197-z.
[11]
Taheem DK, Jell G, Gentleman E. Hypoxia Inducible Factor-1α in Osteochondral Tissue Engineering[J]. Tissue Eng Part B Rev, 2020, 26(2):105-115.
[12]
Cramer T, Schipani E, Johnson RS, et al. Expression of VEGF isoforms by epiphyseal chondrocytes during low-oxygen tension is HIF1-α dependent[J]. Osteoarthritis Caetilage, 2004, 12(6):433-439.
[13]
Mino-Oka A, Izawa T, Shinohara T, et al. Roles of hypoxia inducible factor-1α in the temporomandibular joint[J]. Arch Oral Biol, 2017, 73:274-281.
[14]
Li H, Liao L, Hu Y, et al. Identification of type H vessels in mice mandibular condyle[J]. J Dent Res, 2021, 100(9):983-992.
[15]
Yu J, Liang F, Huang H, et al. Effects of loading on chondrocyte hypoxia, HIF-1α and VEGF in the mandibular condylar cartilage of young rats[J]. Orthod Craniofac Res, 2018, 21(1):41-47.
[16]
Fernández-Torres J, Zamudio-Cuevas Y, Martínez-Nava GA, et al. Hypoxia inducible factors (HIFs) in the articular cartilage: A systematic review[J]. Eur Rev Med Pharmacol Sci, 2017, 21(12):2800-2810.
[17]
Pfander D, Cramer T, Schipani E, et al. HIF-1alpha controls extracellular matrix synthesis by epiphyseal chondrocytes[J]. J Cell Sci, 2003, 116(Pt 9):1819-1826.
[18]
Kim CH, Cho YS, Chun YS, et al. Early expression of myocardial HIF-1 alpha in response to mechanical stresses: Regulation by stretch-activated channels and the phosphatidylinositol 3-kinase signaling pathway[J]. Circ Res, 2002, 90(2):E25-33.
[19]
Cheng M, Yi X, Zhou Q. Overexpression of HIF-1 alpha in bone marrow mesenchymal stem cells promote the repair of mandibular condylar osteochondral defect in a rabbit model[J]. J Oral Maxillofac Surg, 2021, 79(2):345.
[20]
Tang Y, Hong C, Cai Y, et al. HIF-1α mediates osteoclast-induced mandibular condyle growth via AMPK signaling[J]. J Dent Res, 2020, 99(12):1377-1386.
[21]
Chen Y, Zhao B, Zhu Y, et al. HIF-1-VEGF-Notch mediates angiogenesis in temporomandibular joint osteoarthritis[J]. Am J Transl Res, 2019, 11(5):2969-2982.
[22]
Kong P, Chen R, Zou FQ, et al. HIF-1α repairs degenerative chondrocyte glycolytic metabolism by the transcriptional regulation of Runx2[J]. Eur Rev Med Pharmacol Sci, 2021, 25(3):1206-1214.
[1] 邵小丽, 林燕, 张玲玲, 韩亚琴. 超声引导下子宫肌瘤注射聚桂醇硬化术联合术后米非司酮治疗临床疗效分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(03): 353-360.
[2] 唐金侨, 叶宇佳, 王港, 赵彬, 马艳宁. 医学影像学检查方法在颞下颌关节紊乱病中临床应用研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 406-411.
[3] 肖琦钦, 赵文丽, 任明君, 林丽丽, 刘尧, 苏展. 我国颞下颌关节专业学位论文的发展及演进分析[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 250-256.
[4] 黄福, 王黔, 金相任, 唐云川. VEGFR2、miR-27a-5p在胃癌组织中的表达与临床病理参数及预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 558-561.
[5] 朱佳琳, 方向, 贵诗雨, 黄丹, 周小雨, 郭文恺. 大鼠切口疝腹膜前间隙补片修补术后血清中VEGF 和Ang-1 的表达情况[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 703-707.
[6] 张敏龙, 杨翠平, 王博, 崔云杰, 金发光. MiR-200b-3p 通过抑制HIF-1α 表达减轻海水吸入诱导的肺水肿作用及机制[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 696-700.
[7] 暴静, 吴霞, 田雅萍, 尹钢. 维生素D3联合孟鲁司特钠治疗支气管哮喘对血清VEGF、TGF-β1及肺功能的影响[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(01): 63-67.
[8] 庞丹, 孙刚, 伊乐, 丁立云, 钟美艳, 张杰, 于婷婷, 郭乐峰. 血清HIF-1α、VEGF、Flt-1的检测对ARDS的预后及临床意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(01): 127-130.
[9] 芦丹, 杨硕, 刘旭. VEGF、HMGB1、hs-CRP/Alb在AECOPD伴呼吸衰竭中的变化及预后分析[J/OL]. 中华肺部疾病杂志(电子版), 2023, 16(04): 532-534.
[10] 刘佳, 付丽, 杨月美. miR-138-5p调节HIF-1α/Notch1轴对滋养层细胞侵袭和血管生成的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2023, 13(05): 277-287.
[11] 朱迎, 赵征, 许达, 陆录, 殷保兵. 免疫检查点抑制剂治疗肝细胞癌的进展与展望[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(01): 5-10.
[12] 刘涵, 沈强, 张蓝月, 陈健. 糖尿病视网膜病变分子生物标志物的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2023, 13(06): 376-380.
[13] 杨金涓, 夏建平. 糖尿病性黄斑水肿患者基线房水细胞因子水平评估血管内皮生长因子疗效的临床研究[J/OL]. 中华眼科医学杂志(电子版), 2023, 13(06): 350-355.
[14] 宋建波, 韩俊伟, 周敏, 温红萍. 血管内皮生长因子受体酪氨酸激酶抑制剂致蛋白尿风险的荟萃分析[J/OL]. 中华临床医师杂志(电子版), 2023, 17(12): 1297-1303.
[15] 吴晓翔, 杨波, 李景漩, 张凤玲, 郭桂辉, 郑少培. 脐动脉超声检查联合NLR、sFlt-1/PLGF对妊娠高血压综合征患者不良妊娠结局的预测价值[J/OL]. 中华临床医师杂志(电子版), 2023, 17(03): 266-271.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?