切换至 "中华医学电子期刊资源库"

中华老年病研究电子杂志 ›› 2020, Vol. 07 ›› Issue (04) : 21 -26. doi: 10.3877/cma.j.issn.2095-8757.2020.04.004

所属专题: 文献

论著

aKinesin家族成员18A在肺腺癌进展中的作用
杨飏1, 陈福涛1,(), 钟富宽1, 曹莉锋1, 朱江1, 廖莹莹1   
  1. 1. 222000 江苏省连云港市第二人民医院呼吸科
  • 收稿日期:2020-04-30 出版日期:2020-11-28
  • 通信作者: 陈福涛

The role of kinesin family member 18A in the progression of lung adenocarcinoma

Ju Yang1, Futao Chen1,(), Fukuan Zhong1, Lifeng Cao1, Jiang Zhu1, Yingying Liao1   

  1. 1. Department of Respiratory, the Second Hospital of Lianyungang, Lianyungang 222000, China
  • Received:2020-04-30 Published:2020-11-28
  • Corresponding author: Futao Chen
引用本文:

杨飏, 陈福涛, 钟富宽, 曹莉锋, 朱江, 廖莹莹. aKinesin家族成员18A在肺腺癌进展中的作用[J/OL]. 中华老年病研究电子杂志, 2020, 07(04): 21-26.

Ju Yang, Futao Chen, Fukuan Zhong, Lifeng Cao, Jiang Zhu, Yingying Liao. The role of kinesin family member 18A in the progression of lung adenocarcinoma[J/OL]. Chinese Journal of Geriatrics Research(Electronic Edition), 2020, 07(04): 21-26.

目的

探讨Kinesin家族成员(Kinesin family member, KIF)18A在肺腺癌中的表达水平及其在肺腺癌进展中的作用。

方法

选取2014年4月至2018年5月在连云港第二人民医院进行手术治疗的102例肺腺癌患者,均留取肺腺癌组织及癌旁组织。采用免疫组化方法检测肺腺癌组织及癌旁正常组织中KIF18A的表达水平。并行体外细胞试验观察KIF18A对肺腺癌细胞增殖、迁移、入侵等的影响,以及动物实验观察KIF18A对小鼠肿瘤生长和转移的影响。

结果

免疫组化检测:KIF18A主要表达于肺腺癌细胞的细胞质中,而癌旁组织中KIF18A的表达水平明显较低。定量PCR检测:转染KIF18A shRNA质粒后,KIF18A在A549和H1975细胞中的表达均被有效抑制。免疫印迹分析:转染KIF18A shRNA质粒的A549和H1975细胞中KIF18A的表达水平明显降低。菌落测定:KIF18A的消耗明显降低了菌落数目。MTT检测:两种类型的肺腺癌细胞在570 nm处的吸光度值明显降低。伤口愈合试验:KIF18A的耗竭显著抑制了A549和H1975细胞的伤口愈合程度。Transwell实验:KIF18A的耗竭显著阻断了A549和H1975细胞的侵袭,细胞数量显著下降。动物实验:KIF18A基因敲除小鼠的肿瘤体积明显小于对照组,KIF18A的表达水平也明显降低;肿瘤转移8周后,A549细胞的肺转移发生率明显低于对照组。

结论

KIF18A参与了肺腺癌的进展和转移,这将为肺腺癌的靶点治疗提供新的可能。

Objective

To investigate the expression of kinesin family member 18A (KIF18A) in lung adenocarcinoma and its role in the progression of lung adenocarcinoma.

Methods

102 lung adenocarcinoma patients admitted to the Second Hospital of Lianyungang from April 2014 to May 2018 were selected, and lung adenocarcinoma tissues and adjacent tissues were collected. The expression of KIF18A in lung adenocarcinoma and adjacent normal tissues was detected by immunohistochemistry. The effect of KIF18A on the proliferation, migration and invasion of lung adenocarcinoma cells was observed by cell experiment in vitro, and the effect of KIF18A on tumor growth and metastasis in mice was observed.

Results

Immunohistochemical analysis showed that KIF18A was mainly expressed in the cytoplasm of lung adenocarcinoma cells, while the expression level of KIF18A was significantly lower in adjacent tissues. Quantitative PCR showed that the expression of KIF18A in A549 and H1975 cells was effectively inhibited after transfection of KIF18A shRNA plasmid. Western blot analysis showed that the expression level of KIF18A in A549 and H1975 cells transfected with KIF18A shRNA plasmid decreased significantly. Colony determination showed that consumption of KIF18A significantly reduced the number of colonies. MTT detection showed that the absorbance value of two types of lung adenocarcinoma cells at 570 nm was significantly decreased. Wound healing test showed that KIF18A depletion significantly inhibited the wound healing of A549 and H1975 cells. Transwell experiment showed that the depletion of KIF18A significantly blocked the invasion of A549 and H1975 cells, and the number of cells decreased significantly. Animal experiment showed that the tumor volume of KIF18A knockout mice was significantly smaller than that of the control group, and the expression level of KIF18A was also significantly reduced; after 8 weeks of tumor metastasis, the incidence of lung metastasis of A549 cells was significantly lower than that of the control group.

Conclusion

KIF18A is involved in the progression and metastasis of lung adenocarcinoma, which will provide a new possibility for targeted therapy of lung adenocarcinoma.

图1 KIF18A在肺腺癌组织中的低表达情况(DAB染色)。图1A为100倍镜下所见,图1B为200倍镜下所见
图2 KIF18A在肺腺癌组织中的高表达情况(DAB染色)。图2A为100倍镜下所见,图2B为200倍镜下所见
图3 KIF18A在肺腺癌癌旁组织中的表达情况(DAB染色)。图3A为100倍镜下所见,图3B为200倍镜下所见
图4 转染KIF18A shRNA质粒后A549细胞中KIF18A表达的PCR检测结果
图5 转染KIF18A shRNA质粒后H1975细胞中KIF18A表达的PCR检测结果
图6 转染KIF18A shRNA质粒后A549细胞中KIF18A表达的免疫印迹分析
图7 转染KIF18A shRNA质粒后H1975细胞中KIF18A表达的免疫印迹分析
图8 A549和H1975细胞中癌细胞的菌落培养情况
图9 A549和H1975细胞中癌细胞的菌落计数比较
图10 A549细胞中肺腺癌细胞在570 nm处的吸光度值
图11 H1975细胞中肺腺癌细胞在570 nm处的吸光度值
图12 A549和H1975细胞伤口愈合实验Imag J软件拍摄图
图13 A549和H1975细胞划痕宽度对比
图14 A549和H1975细胞迁移的镜下所见(结晶紫染色,×200)
图15 A549和H1975细胞迁移数量的对比
图16 两组小鼠不同观察时点肿瘤体积的对比
图17 肿瘤转移体积的比较
图18 两组小鼠观察期内KIF18A的表达情况
[1]
Pinsky PF, Kramer BS. Lung cancer risk and demographic characteristics of current 20-29 pack-year smokers: Implications for screening[J]. J Natl Cancer Inst, 2015, 107(11): djv226.
[2]
Kim DD, Cohen JT, Wong JB, et al. Targeted incentive programs for lung cancer screening can improve population health and economic efficiency[J]. Health Aff (Millwood), 2019, 38(1):60-67.
[3]
O'Brien TD, Jia P, Aldrich MC, et al. Lung cancer: One disease or many[J]. Hum Hered, 2018, 83(2):65-70.
[4]
He W, Xu D, Wang Z, et al. Three-dimensional nanostructured substrates enable dynamic detection of ALK-rearrangement in circulating tumor cells from treatment-naive patients with stage Ⅲ/Ⅳ lung adenocarcinoma[J]. J Transl Med, 2019, 17(1):32.
[5]
Ma Y, Fan M, Dai L, et al. The expression of TTF-1 and Napsin A in early-stage lung adenocarcinoma correlates with the results of surgical treatment[J]. Tumour Biol, 2015, 36(10):8085-8092.
[6]
Xie L, Dang Y, Guo J, et al. High KRT8 expression independently predicts poor prognosis for lung adenocarcinoma patients[J]. Genes (Basel), 2019, 10(1):36.
[7]
Zhou X, Cai L, Liu J, et al. Analyzing EGFR mutations and their association with clinicopathological characteristics and prognosis of patients with lung adenocarcinoma[J]. Oncol Lett, 2018, 16(1):362-370.
[8]
Salgia R. Mutation testing for directing upfront targeted therapy and post-progression combination therapy strategies in lung adenocarcinoma[J]. Expert Rev Mol Diagn, 2016, 16(7):737-749.
[9]
Li SD, Martial A, Schrock AB, et al. Extraordinary clinical benefit to sequential treatment with targeted therapy and immunotherapy of a BRAF V600E and PD-L1 positive metastatic lung adenocarcinoma[J]. Exp Hematol Oncol, 2017, 6:29.
[10]
Chen JH, Wang YY, Lv WB, et al. Effects of interactions between environmental factors and KIF1B genetic variants on the risk of hepatocellular carcinoma in a Chinese cohort[J]. World J Gastroenterol, 2016, 22(16):4183-4190.
[11]
Xu H, Choe C, Shin SH, et al. Silencing of KIF14 interferes with cell cycle progression and cytokinesis by blocking the p27(Kip1) ubiquitination pathway in hepatocellular carcinoma[J]. Exp Mol Med, 2014, 46(5):e97.
[12]
Yang Z, Li C, Yan C, et al. KIF14 promotes tumor progression and metastasis and is an independent predictor of poor prognosis in human gastric cancer[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(1):181-192.
[13]
Li ZY, Wang ZX, Li CC. Kinesin family member 20B regulates tongue cancer progression by promoting cell proliferation[J]. Mol Med Rep, 2019, 19(3):2202-2210.
[14]
De Wever V, Nasa I, Chamousset D, et al. The human mitotic kinesin KIF18A binds protein phosphatase 1 (PP1) through a highly conserved docking motif[J]. Biochem Biophys Res Commun, 2014, 453(3):432-437.
[15]
Kasahara M, Nagahara M, Nakagawa T, et al. Clinicopathological relevance of kinesin family member 18A expression in invasive breast cancer[J]. Oncol Lett, 2016, 12(3):1909-1914.
[16]
Yang F, Chen Y, Dai W. Sumoylation of Kif18A plays a role in regulating mitotic progression[J]. BMC Cancer, 2015, 15:197.
[17]
Li G, Xie ZK, Zhu DS, et al. KIF20B promotes the progression of clear cell renal cell carcinoma by stimulating cell proliferation[J]. J Cell Physiol, 2019, doi: 10.1002/jcp.28322.
[18]
Tomei EJ, Wolniak SM. Kinesin-2 and kinesin-9 have atypical functions during ciliogenesis in the male gametophyte of Marsilea vestita[J]. BMC Cell Biol, 2016, 17(1):29.
[19]
MacDonald JI, Dietrich A, Gamble S, et al. Nesca, a novel neuronal adapter protein, links the molecular motor kinesin with the pre-synaptic membrane protein, syntaxin-1, in hippocampal neurons[J]. J Neurochem, 2012, 121(6):861-880.
[20]
Rath O, Kozielski F. Kinesins and cancer[J]. Nat Rev Cancer, 2012, 12(8):527-539.
[21]
Zhang C, Zhu C, Chen H, et al. Kif18A is involved in human breast carcinogenesis[J]. Carcinogenesis, 2010, 31(9):1676-1684.
[22]
Czechanski A, Kim H, Byers C, et al. Kif18a is specifically required for mitotic progression during germ line development[J]. Dev Biol, 2015, 402(2):253-262.
[23]
Shin Y, Du Y, Collier SE, et al. Biased Brownian motion as a mechanism to facilitate nanometer-scale exploration of the microtubule plus end by a kinesin-8[J]. Proc Natl Acad Sci USA, 2015, 112(29):E3826-3835.
[24]
Chen QI, Cao B, Nan N, et al. Elevated expression of KIF18A enhances cell proliferation and predicts poor survival in human clear cell renal carcinoma[J]. Exp Ther Med, 2016, 12(1):377-383.
[25]
Zhu H, Xu W, Zhang H, et al. Targeted deletion of Kif18a protects from colitis-associated colorectal (CAC) tumors in mice through impairing Akt phosphorylation[J]. Biochem Biophys Res Commun, 2013, 438(1):97-102.
[26]
Luo W, Liao M, Liao Y, et al. The role of kinesin KIF18A in the invasion and metastasis of hepatocellular carcinoma[J]. World J Surg Oncol, 2018, 16(1):36.
[27]
Motono N, Funasaki A, Sekimura A, et al. Prognostic value of epidermal growth factor receptor mutations and histologic subtypes with lung adenocarcinoma[J]. Med Oncol, 2018, 35(3):22.
[28]
Liu C, Li Z, Wang S, et al. FUT4 is involved in PD-1-related immunosuppression and leads to worse survival in patients with operable lung adenocarcinoma[J]. J Cancer Res Clin Oncol, 2019, 145(1):65-76.
[29]
Cross RA, McAinsh A. Prime movers: the mechanochemistry of mitotic kinesins[J]. Nat Rev Mol Cell Biol, 2014, 15(4):257-271.
[30]
Honore S, Pasquier E, Braguer D. Understanding microtubule dynamics for improved cancer therapy[J]. Cell Mol Life Sci, 2005, 62(24):3039-3056.
[31]
Du Y, English CA, Ohi R. The kinesin-8 Kif18A dampens microtubule plus-end dynamics[J]. Curr Biol, 2010, 20(4):374-380.
[1] 刘琴, 刘瀚旻, 谢亮. 基质金属蛋白酶在儿童哮喘发生机制中作用的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 564-568.
[2] 黄福, 王黔, 金相任, 唐云川. VEGFR2、miR-27a-5p在胃癌组织中的表达与临床病理参数及预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 558-561.
[3] 黄莹, 李璇, 刘梦杨, 彭桂林, 徐鑫, 韦兵, 杨超. 靶向联合治疗双肺移植术后KRAS和BRAF基因双突变晚期肺腺癌一例[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 298-301.
[4] 祝炜安, 林华慧, 吴建杰, 黄炯煅, 吴婷婷, 赖文杰. RDM1通过CDK4促进前列腺癌细胞进展的研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 618-625.
[5] 吴伟宙, 王琼仁, 詹雄宇, 郑明星, 李亚县. 广东省医学会泌尿外科疑难病例多学科会诊(第16期)——左肾肉瘤样癌[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 525-529.
[6] 胡思平, 熊性宇, 徐航, 杨璐. 衰老相关分泌表型因子在前列腺癌发生发展中的作用机制[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 425-434.
[7] 赵蒙蒙, 黄洁, 余荣环, 王葆青. 过表达小GTP酶Rab32抑制非小细胞肺癌细胞侵袭性生长[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 512-518.
[8] 郑琪, 马婕群, 张彦兵, 廖子君, 张锐. EPHA5突变预测肺腺癌免疫检查点抑制剂治疗预后的临床意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 548-552.
[9] 赵旭鹏, 王集琛, 田硕, 李宏召, 李修彬, 张旭. EP300 通过上调FKBP10 促进膀胱肿瘤细胞迁移和侵袭[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 264-274.
[10] 黄程鑫, 陈莉, 刘伊楚, 王水良, 赖晓凤. OPA1 在乳腺癌组织的表达特征及在ER阳性乳腺癌细胞中的生物学功能研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 275-284.
[11] 陈伟杰, 何小东. 胆囊癌免疫靶向治疗进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 763-768.
[12] 魏妙艳, 徐近. 合并远处转移胰腺癌系统性治疗的梳理和展望[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 644-650.
[13] 崔精, 鲍一帆, 沈晓明, 杨增辉, 高森, 鲍传庆. 结直肠癌中circMFSD12对肿瘤细胞功能及5-FU敏感性的调控[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 294-302.
[14] 王国强, 张纲, 唐建坡, 张玉国, 杨永江. LINC00839 调节miR-17-5p/WEE1 轴对结直肠癌细胞增殖、凋亡和迁移的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 491-499.
[15] 靳英, 付小霞, 陈美茹, 袁璐, 郝力瑶. CD147调控MAPK信号通路对结肠癌细胞增殖和凋亡的影响及机制研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 474-480.
阅读次数
全文


摘要