[12] |
Yu ZX, Ji MS, Yan J, et al. The ratio of Th17/Treg cells as a risk indicator in early acute respiratory distress syndrome[J].Crit Care, 2015, 19: 82.
|
[13] |
陈坤,周秋香,单红卫,等.CD4+CD25+调节性T细胞在脓毒症预后评价中的应用[J].中华急诊医学杂志,2015,24(1):72-76
|
[14] |
Zhao GJ, Li D, Zhao Q, et al. Incidence, risk factors and impact on outcomes of secondary infection in patients with septic shock: an 8-year retrospective study[J]. Sci Rep, 2016, 6:38361.
|
[15] |
Sun N, Wei X, Wang J, et al. Caveolin-1 promotes the imbalance of Th17/Treg in patients with chronic obstructive pulmonary disease[J]. Inflammation, 2016, 39(6):2008-2015.
|
[16] |
吴铁军,张丽娜,亢翠翠.Treg/Th17失衡在脓毒症发病机制中的作用[J].中国病理生理杂志,2011,27(12):2411-2413.
|
[17] |
Liu Q, Zheng H, Chen X, et al. Human mesenchymal stromal cells enhance the immunomodulatory function of CD8+CD28-regulatory T cells[J].Cell Mol Immunol, 2015, 12(6):708-718.
|
[18] |
麦惠强,许进,蓝先旗,等.多发伤患者CD8+CD28-T细胞含量变化及其临床意义[J].南方医科大学学报,2016,36(4):544-547.
|
[19] |
Chinai JM, Janakiram M, Chen F, et al. New immunotherapies targeting the PD-1 pathway[J]. Trends Pharmacol Sci, 2015, 36(9):587-595.
|
[20] |
袁洁铭,李理,袁伟锋,等.老年人T淋巴细胞PD-1高表达在炎症状态下对其功能的影响[J].免疫学杂志,2017,33(6):519-524.
|
[21] |
Kahn JM, Le T, Angus DC, et al. The epidemiology of chronic critical illness in The United States[J]. Crit Care Med, 2015, 43(2):282-287.
|
[22] |
Baertling F, Meissner T, Tmeger A, et al. Granulocyte colony stimulating factor for treatment of neutmpenia-associated infection in Pearson syndrome[J]. Klin Padiatr, 2014, 226(3):190-191.
|
[23] |
Bo L, Wang F, Zhu J, et al. Granulocyte-colony stimulating factor (G-CSF) and granulocyte-macrophage colony stimulaTing factor (GM-CSF) for sepsis: a meta-analysis[J]. Crit Care, 2011, 15(1):R58.
|
[24] |
Mayer CT, Ghorbani P, Nandan A, et al. Selective and efficient generation of functional Batf3-dependent CD103+dendritic cells from mouse bone marrow[J]. Blood, 2014, 124(20):3081.
|
[25] |
Xu Q, Zhu YF, Wang HC, et al. Enhanced efficacy of DNA vaccination against botulinum neurotoxin serotype A by co-administration of plasmids encoding DC-sTimulaTing FlT3L and MIP-3α cytokines[J].Biologicals, 2016, 44(5):441-447.
|
[26] |
Pica F, ChimenTi MS, Gaziano R, et al. Serum thymosin alpha 1 levels in patients with chronic inflammatory autoimmune diseases[J]. Clin Experiment Immunol, 2016, 186(1):39-45.
|
[27] |
Garaci E, Pica F, Matteucci C, et a1. Historical review on thymosin alphal in oncology: preclinical and clinical experiences[J]. Expert Opin Biol Ther, 2015, 15 Suppl 1:S31-S39.
|
[28] |
Yang X, Qian F, He HY, et al. Effect of thymosin alpha-1 on subpopulations of Th1, Th2, Th17, and regulatory T cells (Tregs) in vitro[J]. Braz J Med Biol Res, 2012, 45(1):25-32.
|
[29] |
Patera AC, Drewry AM, Chang K, et al. Frontline science: defects in immune function in patients with sepsis are associated with PD-1 or PD-L1 expression and can be restored by antibodies targeting PD-1 or PD-L1[J]. J Leukoc Biol, 2016, 100(6):1239-1254.
|
[30] |
Zhang Y, Zhou Y, Lou J, et al. PD-L1 blockade improves survival in experimental sepsis by inhibiting lymphocyte apoptosis and reversing monocyte dysfunction[J]. Crit Care, 2010, 14(6):R220.
|
[31] |
Shindo Y, Fuchs AG, Davis CG, et al. Interleukin 7 immunotherapy improves host immunity and survival in a two-hit model of pseudomonas aeruginosa pneumonia[J]. J Leukoc Biol, 2017, 101(2): 543-554.
|
[32] |
Demaret J, et al. STAT5 phosphorylation in T cell subsets from septic patients in response to recombinant human interleukin-7: a pilot study[J]. J Leukoc Biol, 2015, 97(4):791-796.
|
[33] |
Shindo Y, McDonough JS, Chang KC, et al. Anti-PD-L1 peptide improves survival in sepsis[J]. J Surg Res, 2017, 208:33-39.
|
[34] |
Francois B, JeanneT R, Daix T, et al. Interleukin-7 restores lymphocytes in septic shock: the IRIS-7 randomized clinical trial[J]. JCI Insight, 2018, 3(5). doi: 10.1172/jci.insight.98960.
|
[35] |
高铭鑫,李海涛,张帆,等.肺灌注抗肿瘤坏死因子抗体对体外循环肺超微结构的影响[J].中华胸心血管外科杂志,2016,30(1):33-37.
|
[1] |
中国医师协会急诊医师分会.中国急诊重症肺炎临床实践专家共识[J/CD].中国急救医学,2016,36(2):97-107.
|
[2] |
Gentile LF, Cuenca AG, Efron PA, et al. Persistent inflammation and immunosuppression: a common syndrome and new horizon for surgical intensive care [J]. J Trauma Acute Care Surg, 2012, 72(6):1491-1501.
|
[3] |
Su HY, Mo ZX, Chen Z, et al. Severe disease of immune imbalance in ICU: persistent flammation immunosuppression catabolism syndrome[J]. Chin Crit Care Med, 2017, 29 (8):760-764.
|
[4] |
Wang JF, Li JB, Zhao YJ, et al. Up-regulation of programmed cell death 1 ligand 1 on neutrophils may be involved in sepsis-induced immunosuppression: an animal study and a prospective case-control study[J]. Anesthesiology, 2015, 122(4):852-863.
|
[5] |
Gotts JE, Matthay MA. Sepsis: pathophysiology and clinical management[J]. BMJ, 2016, 353:i1585.
|
[6] |
Lee J, Tam H, Adler L, et al. The MHC classⅡantigenpresentation pathway in human monocytes differs by subset and is regulated by cytokines[J]. PloS one, 2017, 12(8):e0183594.
|
[7] |
魏莉,白洁,王丽,等.免疫治疗对重症肺炎患者免疫功能指标的影响研究[J].中华医院感染学杂志,2014,24(12):2871-2873.
|
[8] |
Grailer JJ, Kalbitz M, Zetoune FS, et al. Persistent neutrophil dysfunction and suppression of acute lung injury in mice following cecal ligation and puncture sepsis[J].J Innate Immun, 2014, 6(5):695-705.
|
[9] |
刘军.危重病免疫功能监测研究进展[J].中华重症医学电子杂志(网络版),2019,5(1):56-63.
|
[10] |
程静,姚晔,谢丛华.放射性肺损伤与Th1/Th2免疫失衡研究进展[J].中华放射肿瘤学杂志,2017,26(6):706-710.
|
[11] |
解立新,肖坤.免疫失衡是重症感染的核心问题之一[J].中华结核和呼吸杂志,2018,4(9):675-677.
|