[1] |
颜贵英,胡松.糖尿病心肌病中微血管病变的研究进展[J].中国循环杂志,2015,30(5):505-507.
|
[2] |
Pappachan JM, Varughese GI, Sriraman R, et al. Diabetic cardiomyopathy: pathophysiology, diagnostic evaluation and management[J]. World J Diabetes, 2013, 4(5):177-189.
|
[3] |
Falcão-Pires IL, Leite-Moreira AF. Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment[J]. Heart Fail Rev, 2012, 17 (3):325-344.
|
[4] |
张峰,梅其炳.ATP敏感的钾通道与预适应心肌保护作用[J].生理科学进展,2002,33(2):148-150.
|
[5] |
Rubler S, Dlugash J, Yuceoglu YZ, et al. New type of cardiomyopathy associated with diabetic glomerulosclerosis[J]. Am J Cardiol, 1972, 30(6):595-602.
|
[6] |
Maya L, Villarreal FJ. Diagnostic approaches for diabetic cardiomyopathy and myocardial fibrosis[J]. J Mol Cell Cardiol, 2010, 48(3):524-529.
|
[7] |
冯新星,陈燕燕.糖尿病心肌病的研究进展[J].中国循环杂志,2015,30(1):87-89.
|
[8] |
Joshi M, Kotha SR, Malireddy S, et al. Conundrum of pathogenesis of diabetic cardiomyopathy: role of vascular endothelial dysfunction, reactive oxygen species, and mitochondria[J]. Mol Cell Biochem, 2014, 386(1-2):233-249.
|
[9] |
Cai L. Suppression of nitrative damage by metallothionein in diabetic heart contributes to the prevention of cardiomyopathy[J]. Free Radic Biol Med, 2006, 41(6):851-861.
|
[10] |
Palomer X, Pizarro-Delgado J, Vázquez-Carrera M. Emerging actors in diabetic cardiomyopathy: heartbreaker biomarkers or therapeutic targets[J]? Trends Pharmacol Sci, 2018, 39(5):452-467.
|
[11] |
Wang YJ, Lyu XY, Yu L. High glucose induces myocardial cell injury through increasing reactive oxygen species production[J]. Asian Pac J Trop Med, 2018, 11(1):63.
|
[12] |
Noma A. ATP-regulated K+ channels in cardiac muscle[J]. Nature, 1983, 305(5930):147-148.
|
[13] |
Asano G, Takashi E, Ishiwata T, et al. Pathogenesis and protection of ischemia and reperfusion injury in myocardium[J]. J Nippon Med Sch, 2003, 70(5):384-392.
|
[14] |
王静.关于糖尿病心肌病Ca2+与K+电生理改变的研究进展[C].安徽省第十六次心血管学术年会论文集,2013:59-61.
|
[15] |
Vague P, Coste TC, Jannot MF, et al. C-peptide, Na+, K(+)-ATPase, and diabetes[J]. Exp Diabesity Res, 2004, 5(1):37-50.
|
[16] |
Zhang DM, Chai Y, Erickson JR, et al. Intracellular signalling mechanism responsible for modulation of sarcolemmal ATP‐sensitive potassium channels by nitric oxide in ventricular cardiomyocytes[J]. J Physiol, 2014, 592(5):971-990.
|
[17] |
Kotoda M, Ishiyama T, Mitsui K, et al. Nicorandil increased the cerebral blood flow via nitric oxide pathway and ATP-sensitive potassium channel opening in mice[J]. J Anesth, 2018, 32(2):244-249.
|
[18] |
Mohamed YS, Ahmed LA, Salem HA, et al. Role of nitric oxide and KATP channel in the protective effect mediated by nicorandil in bile duct ligation-induced liver fibrosis in rats[J]. Biochem Pharmacol, 2018, 151:135-142.
|
[19] |
Sánchez-Duarte E, Trujillo X, Cortés-Rojo C, et al. Nicorandil improves post-fatigue tension in slow skeletal muscle fibers by modulating glutathione redox state[J]. J Bioenerg Biomembr, 2017, 49(2):159-170.
|
[20] |
王云鹏,张云,孙一荣,等.尼可地尔对急性ST段抬高型心肌梗死患者行急诊经皮冠状动脉介入治疗后室性心律失常的影响[J].中华心血管病杂志,2017,45(8):701-705.
|