切换至 "中华医学电子期刊资源库"

中华老年病研究电子杂志 ›› 2015, Vol. 02 ›› Issue (03) : 18 -21. doi: 10.3877/cma.j.issn.2095-8757.2015.03.005

所属专题: 文献

综述

内分泌系统在机体衰老过程中的作用(续)
宋威1   
  1. 1. 02115-0692 Department of genetics,Harvard Medical School
  • 收稿日期:2015-08-17 出版日期:2015-08-28

The role of endocrine system in aging process (Chapter one)

Wei Song1   

  • Received:2015-08-17 Published:2015-08-28
引用本文:

宋威. 内分泌系统在机体衰老过程中的作用(续)[J]. 中华老年病研究电子杂志, 2015, 02(03): 18-21.

Wei Song. The role of endocrine system in aging process (Chapter one)[J]. Chinese Journal of Geriatrics Research(Electronic Edition), 2015, 02(03): 18-21.

[1]
Chahal HS, Drake WM. The endocrine system and ageing[J]. J Pathol, 2007, 211(2): 173-180.
[2]
Romano AD, Serviddio G, de Matthaeis A, et al.Oxidative stress and aging[J]. J Nephrol, 2010, 23(Suppl 15): S29-36.
[3]
Brown MK, Naidoo N. The endoplasmic reticulum stress response in aging and age-related diseases[J]. Front Physiol, 2012, 3: 263.
[4]
Woods JA, Wilund KR, Martin SA, et al. Exercise, inflammation and aging[J]. Aging Dis, 2012, 3(1): 130-140 .
[5]
Bratic A, Larsson NG. The role of mitochondria in aging[J]. J Clin Invest, 2013, 123: 951-957.
[6]
Duffy JB. GAL4 system in Drosophila: a fly geneticist's Swiss army knife[J]. Genesis, 2002, 34(1-2): 1-15.
[7]
Pluck A. Conditional mutagenesis in mice: the Cre/loxP recombination system[J]. Int J Exp Pathol, 1996, 77(6): 269-278.
[8]
Libina N, Berman JR, Kenyon C, et al. Tissue-specific activities of C.elegans DAF-16 in the regulation of lifespan[J]. Cell, 2003, 115(4): 489-502.
[9]
Arantes-Oliveira N, Apfeld J, Dillin A, et al. Regulation of life-span by germ-line stem cells in Caenorhabditis elegans[J]. Science, 2002, 295(5554): 502-505.
[10]
Blüher M, Kahn BB, Kahn CR. Extended longevity in mice lacking the insulin receptor in adipose tissue[J]. Science, 2003, 299(5606): 572-574.
[11]
Taguchi A, Wartschow LM, White MF. Brain IRS2 signaling coordinates life span and nutrient homeostasis[J]. Science, 2007, 317(5836): 369-372.
[12]
Song W, Ren D, Li W, et al. SH2B regulation of growth, metabolism, and longevity in both insects and mammals[J]. Cell Metab, 2010, 11(5): 427-437.
[13]
Hwangbo DS, Gershman B, Tu MP, et al. Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body[J]. Nature, 2004, 429(6991): 562-566.
[14]
Durieux J, Wolff S, Dillin A. The cell-non-autonomous nature of electron transport chain-mediated longevity[J]. Cell, 2001, 144(1): 79-91.
[15]
Taylor RC, Dillin A. XBP-1 is a cell-nonautonomous regulator of stress resistance and longevity[J]. Cell, 2013, 153(7): 1435-1447.
[16]
Bishop NA, Guarente L. Two neurons mediate diet-restriction-induced longevity in C.elegans[J]. Nature, 2007, 447(7144): 545-549.
[17]
Riera CE, Huising MO, Follett P, et al. TRPV1 pain receptors regulate longevity and metabolism by neuropeptide signaling[J]. Cell, 2014, 157(5): 1023-1036.
[18]
Keipert S, Ost M, Chadt A, et al. Skeletal muscle uncoupling-induced longevity in mice is linked to increased substrate metabolism and induction of the endogenous antioxidant defense system[J]. Am J Physiol Endocrinol Metab, 2013, 304(5): E495-506.
[19]
Keipert S, Voigt A, Klaus S. Dietary effects on body composition, glucose metabolism, and longevity are modulated by skeletal muscle mitochondrial uncoupling in mice[J]. Aging Cell, 2011, 10(1): 122-136.
[20]
Wenz T, Rossi SG, Rotundo RL, et al. Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging[J]. Proc Natl Acad Sci U S A, 2009, 106(48): 20405-20410.
[21]
Hakimi P, Yang J, Casadesus G, et al. Overexpression of the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) in skeletal muscle repatterns energy metabolism in the mouse[J]. J Biol Chem, 2007, 282(45): 32844-32855.
[22]
Partridge L, Alic N, Bjedov I, et al. Ageing in Drosophila: the role of the insulin/Igf and TOR signalling network[J]. Exp Gerontol, 2011, 46(5): 376-381.
[23]
Slack C, Werz C, Wieser D, et al. Regulation of lifespan, metabolism, and stress responses by the Drosophila SH2B protein, Lnk[J]. PLoS Genet, 2010, 6(3): e1000881.
[24]
Demontis F, Perrimon N. FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging[J]. Cell, 2010, 143(5): 813-825.
[25]
Owusu-Ansah E, Song W, Perrimon N. Muscle mitohormesis promotes longevity via systemic repression of insulin signaling[J]. Cell, 2013, 155(3): 699-712.
[26]
Rera M, Bahadorani S, Cho J, et al. Modulation of longevity and tissue homeostasis by the Drosophila PGC-1 homolog[J]. Cell Metab, 2011, 14(5): 623-634.
[27]
Biteau B, Karpac J, Supoyo S, et al. Lifespan extension by preserving proliferative homeostasis in Drosophila[J]. PLoS Genet, 2010, 6(10): e1001159.
[28]
Bartke A. Growth hormone and aging: a challenging controversy[J]. Clin Interv Aging, 2008, 3(4): 659-665.
[29]
Barron AM, Pike CJ. Sex hormones, aging, and Alzheimer's disease[J]. Front Biosci (Elite Ed), 2012, 4: 976-997.
[30]
Michaud M, Balardy L, Moulis G, et al. Proinflammatory cytokines, aging, and age-related diseases[J]. J Am Med Dir Assoc, 2013, 14(12): 877-882.
[31]
Morley JE, Baumgartner RN. Cytokine-related aging process[J]. J Gerontol A Biol Sci Med Sci, 2004, 59(9): M924-929.
[32]
Conboy IM, Conboy MJ, Wagers AJ, et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment[J]. Nature, 2005, 433(7027): 760-764.
[33]
Finerty JC. Parabiosis in physiological studies[J]. Physiol Rev, 1952, 32(3): 277-302.
[34]
Ruckh JM, Zhao JW, Shadrach JL, et al. Rejuvenation of regeneration in the aging central nervous system[J]. Cell Stem Cell, 2012, 10(1): 96-103.
[35]
Sherwood RI, Christensen JL, Conboy IM, et al. Isolation of adult mouse myogenic progenitors: functional heterogeneity of cells within and engrafting skeletal muscle[J]. Cell, 2004, 119(4): 543-554.
[36]
Coleman DL, Hummel KP. Effects of parabiosis of normal with genetically diabetic mice[J]. Am J Physiol, 1969, 217(5): 1298-1304.
[37]
Brack AS, Conboy MJ, Roy S, et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis[J]. Science, 2007, 317(5839): 807-810.
[38]
Villeda SA, Luo J, Mosher KI, et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function[J]. Nature, 2011, 477(7362): 90-94.
[39]
Loffredo FS, Steinhauser ML, Jay SM, et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy[J]. Cell, 2013, 153(4)828-839.
[40]
Sinha M, Jang YC, Oh J, et al. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle[J]. Science, 2014, 344(6184): 649-652.
[41]
Katsimpardi L, Litterman NK, Schein PA, et al. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors[J]. Science, 2014, 344(6184): 630-634.
[42]
Kannan K, Fridell YW. Functional implications of Drosophila insulin-like peptides in metabolism, aging, and dietary restriction[J].Front Physiol, 2013, 4: 288.
No related articles found!
阅读次数
全文


摘要