切换至 "中华医学电子期刊资源库"

中华老年病研究电子杂志 ›› 2025, Vol. 12 ›› Issue (01) : 41 -47. doi: 10.3760/cma.j.issn.2095-8757.2025.01.008

综述

线粒体功能障碍与老年人缺血性脑卒中相关信号通路关系研究进展
光雪珂1, 刘承云1, 卢伟琳1,()   
  1. 1. 430022 武汉,华中科技大学同济医学院附属协和医院老年医学科
  • 收稿日期:2024-09-18 出版日期:2025-02-28
  • 通信作者: 卢伟琳
  • 基金资助:
    湖北省科学技术厅重点研发计划项目(2023BCB145)

Advances in the relationship between mitochondrial dysfunction and signaling pathways associated with ischemic stroke among the elderly

Xueke Guang1, Chengyun Liu1, Weilin Lu1,()   

  1. 1. Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
  • Received:2024-09-18 Published:2025-02-28
  • Corresponding author: Weilin Lu
引用本文:

光雪珂, 刘承云, 卢伟琳. 线粒体功能障碍与老年人缺血性脑卒中相关信号通路关系研究进展[J/OL]. 中华老年病研究电子杂志, 2025, 12(01): 41-47.

Xueke Guang, Chengyun Liu, Weilin Lu. Advances in the relationship between mitochondrial dysfunction and signaling pathways associated with ischemic stroke among the elderly[J/OL]. Chinese Journal of Geriatrics Research(Electronic Edition), 2025, 12(01): 41-47.

随着全球老龄化趋势的加剧,老年缺血性脑卒中( IS)患者的数量不断增加,寻找有效靶点治疗、改善老年IS患者预后十分必要。线粒体功能障碍与衰老关系密切,可影响神经元的存活能力和功能预后,是IS发病机制中的关键因素。文章综述线粒体功能障碍与IS相关信号通路的关系,如核因子E2相关因子2信号通路、蛋白激酶 R 样内质网激酶信号通路、磷脂酰肌醇3-激酶/蛋白激酶B信号通路、环状鸟苷酸-腺苷酸合酶干扰素基因刺激因子信号通路等,以期为防治老年人IS并降低其致残率和死亡率提供新的治疗策略。

As the global ageing trend intensifies, the number of elderly patients suffering from ischaemic stroke (IS) is increasing. It is therefore essential to identify effective targets for treatment and improve the prognosis of elderly stroke patients. Mitochondrial dysfunction is closely related to ageing,which affects neuronal viability and functional prognosis, is a key factor in the pathogenesis of IS. This paper reviews mitochondrial dysfunction and IS-related signaling pathways [nuclear factor erythroid 2 related factor (NRF2) signaling pathway, protein kinase RNA-like ER kinase (PERK) signaling pathway,Phosphoinositide 3-kinase /protein kinase B (PI3K/Akt) signaling pathway, cyclic GMP-AMP synthase(cGAS)-STING signaling pathway]by searching and analyzing the relevant literature, to provide new therapeutic strategies for preventing and treating ischemic stroke and decreasing the disability and mortality rates among the elderly.

图1 NRF2信号通路与线粒体功能的关系 注:NRF2指核因子E2相关因子2;Drp1指动力相关蛋白1
图2 PERK信号通路与线粒体功能的关系 注:PERK指蛋白激酶 R样内质网激酶
图3 PI3K/Akt信号通路与线粒体功能的关系 注:PI3K/Akt磷脂酰肌醇3-激酶/蛋白激酶B;NRF2指核因子E2相关因子2
图4 cGAS-STING信号通路与线粒体功能的关系 注:cGAS指鸟苷酸合酶-环状腺苷酸;STING指干扰素基因刺激因子
[1]
GBD 2021 Diseases and Injuries Collaborators. Global incidence,prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990-2021: A systematic analysis for the Global Burden of Disease Study 2021[J]. Lancet, 2024,403(10440):2133-2161.
[2]
Fan J, Li X, Yu X, et al. Global burden, risk factor analysis, and prediction study of ischemic stroke, 1990-2030[J]. Neurology,2023, 101(2):e137-e150.
[3]
Barrington J, Lemarchand E, Allan SM. A brain in flame; do inflammasomes and pyroptosis influence stroke pathology?[J].Brain Pathol, 2017, 27(2): 205-212.
[4]
GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet Neurol, 2019, 18(5): 459-480.
[5]
Fonarow GC, Reeves MJ, Zhao X, et al. Age-related differences in characteristics, performance measures, treatment trends, and outcomes in patients with ischemic stroke[J]. Circulation, 2010,121(7):879-891.
[6]
Lo JW, Crawford JD, Desmond DW, et al. Long-term cognitive decline after stroke: An individual participant data Metaanalysis[J]. Stroke, 2022, 53(4):1318-1327.
[7]
Motlagh NJ, Wang C, Kim HH, et al. Aging intensifies myeloperoxidase activity after ischemic stroke[J]. Aging Dis,2024, 15(6):2650-2664.
[8]
An H, Zhou B, Ji X. Mitochondrial quality control in acute ischemic stroke[J]. J Cereb Blood Flow Metab, 2021, 41(12):3157-3170.
[9]
Tran M, Reddy PH. Defective autophagy and mitophagy in aging and Alzheimer's disease[J]. Front Neurosci, 2020, 14:612757.
[10]
Silva-Palacios A, Ostolga-Chavarria M, Zazueta C, et al. Nrf2:Molecular and epigenetic regulation during aging[J]. Ageing Res Rev, 2018, 47:31-40.
[11]
Slezak J, Kura B, Lebaron TW, et al. Oxidative stress and pathways of molecular hydrogen effects in medicine[J]. Curr Pharm Des, 2021, 27(5):610-625.
[12]
Salminen A, Kaarniranta K, Kauppinen A. Age-related changes in AMPK activation: Role for AMPK phosphatases and inhibitory phosphorylation by upstream signaling pathways[J]. Ageing Res Rev, 2016, 28:15-26.
[13]
Bao C, Yang Z, Li Q, et al. Aerobic endurance exercise ameliorates renal vascular sclerosis in aged mice by regulating PI3K/AKT/mTOR signaling pathway[J]. DNA Cell Biol, 2020, 39(2):310-320.
[14]
Li J, Chen K, Li X, et al. Mechanistic insights into the alterations and regulation of the AKT signaling pathway in diabetic retinopathy[J]. Cell Death Discov, 2023, 9(1):418.
[15]
Sun B, Li L, Luo J. Brain endothelial cyclic GMP-AMP synthase(cGAS)-stimulator of interferon genes (STING) signaling pathway in aging and neurodegeneration[J]. Neural Regen Res, Epub 2024.07.29.
[16]
Kholoshina GI, Severinenko RM, Deriabina TI, et al. Complement and lysozyme indices in acute pneumonia and chronic bronchitis[J]. Vrach Delo, 1986(4):60-62.
[17]
Li L, Meng F, Li D. Downregulation of Nrf2 in the hippocampus contributes to postoperative cognitive dysfunction in aged rats by sensitizing oxidative stress and neuroinflammation[J]. Oxid Med Cell Longev, 2023, 2023:7272456.
[18]
Yang Q, Li M, Liu J, et al. Intermittent fasting ameliorates neuronal ferroptosis and cognitive impairment in mice after traumatic brain injury[J]. Nutrition, 2023, 109:111992.
[19]
Fan W, Chen H, Li M, et al. NRF2 activation ameliorates bloodbrain barrier injury after cerebral ischemic stroke by regulating ferroptosis and inflammation[J]. Sci Rep, 2024, 14(1):5300.
[20]
Sun YY, Zhu HJ, Zhao RY, et al. Remote ischemic conditioning attenuates oxidative stress and inflammation via the Nrf2/HO-1 pathway in MCAO mice[J]. Redox Biol, 2023, 66:102852.
[21]
Kang JB, Koh PO. Retinoic acid alleviates the reduction of Akt and Bad phosphorylation and regulates Bcl-2 family protein interactions in animal models of ischemic stroke[J]. PLoS One,2024, 19(5):e303213.
[22]
Esteras N, Blacker TS, Zherebtsov EA, et al. Nrf2 regulates glucose uptake and metabolism in neurons and astrocytes[J].Redox Biol, 2023, 62:102672.
[23]
Sabouny R, Fraunberger E, Geoffrion M, et al. The keap1-Nrf2 stress response pathway promotes mitochondrial hyperfusion through degradation of the mitochondrial fission protein drp1[J].Antioxid Redox Signal, 2017, 27(18):1447-1459.
[24]
Yu X, Dang L, Zhang R, et al. Therapeutic potential of targeting the PERK signaling pathway in ischemic stroke[J].Pharmaceuticals (Basel), 2024, 17(3):353.
[25]
Lahiri A, Walton JC, Zhang N, et al. Astrocytic deletion of protein kinase R-like ER kinase (PERK) does not affect learning and memory in aged mice but worsens outcome from experimental stroke[J]. J Neurosci Res, 2023, 101(10):1586-1610.
[26]
Ye Q, Jo J, Wang CY, et al. Astrocytic Slc4a4 regulates bloodbrain barrier integrity in healthy and stroke brains via a CCL2-CCR2 pathway and NO dysregulation[J]. Cell Rep, 2024, 43(5):114193.
[27]
Liu Y, Cui F, Xu A, et al. Interaction between the PERK/ATF4 branch of the endoplasmic reticulum stress and mitochondrial onecarbon metabolism regulates neuronal survival after intracerebral hemorrhage[J]. Int J Biol Sci, 2024, 20(11):4277-4296.
[28]
Kim HJ, Joe Y, Rah SY, et al. Carbon monoxide-induced TFEB nuclear translocation enhances mitophagy/mitochondrial biogenesis in hepatocytes and ameliorates inflammatory liver injury[J]. Cell Death Dis, 2018, 9(11):1060.
[29]
Creamer TP. Calcineurin[J]. Cell Commun Signal, 2020,18(1):137.
[30]
Wang X, Fang Y, Huang Q, et al. An updated review of autophagy in ischemic stroke: From mechanisms to therapies[J]. Exp Neurol,2021, 340:113684.
[31]
Li HQ, Xia SN, Xu SY, et al. gamma-Glutamylcysteine alleviates ischemic stroke-induced neuronal apoptosis by inhibiting ROSmediated endoplasmic reticulum stress[J]. Oxid Med Cell Longev,2021, 2021:2961079.
[32]
Wu Y, Fan X, Chen S, et al. Geraniol-mediated suppression of endoplasmic reticulum stress protects against cerebral ischemiareperfusion injury via the PERK-ATF4-CHOP pathway[J]. Int J Mol Sci, 2022, 24(1):544.
[33]
Dhir N, Jain A, Sharma AR, et al. PERK inhibitor, GSK2606414,ameliorates neuropathological damage, memory and motor functional impairments in cerebral ischemia via PERK/p-eIF2a/ATF4/CHOP signaling[J]. Metab Brain Dis, 2023, 38(4):1177-1192.
[34]
Almeida LM, Pinho BR, Duchen MR, et al. The PERKs of mitochondria protection during stress: Insights for PERK modulation in neurodegenerative and metabolic diseases[J]. Biol Rev Camb Philos Soc, 2022, 97(5):1737-1748.
[35]
Prinz WA, Toulmay A, Balla T. The functional universe of membrane contact sites[J]. Nat Rev Mol Cell Biol, 2020, 21(1):7-24.
[36]
Khezri MR, Mohammadipanah S, Ghasemnejad-Berenji M. The pharmacological effects of Berberine and its therapeutic potential in different diseases: Role of the phosphatidylinositol 3-kinase/AKT signaling pathway[J]. Phytother Res, 2024, 38(1):349-367.
[37]
Li J, Shan W, Zuo Z. Age-related upregulation of carboxyl terminal modulator protein contributes to the decreased brain ischemic tolerance in older rats[J]. Mol Neurobiol, 2018, 55(7):6145-6154.
[38]
Chen Y, Hsu C, Chen X, et al. Editorial: Regulation of PI3K/Akt signaling pathway: A feasible approach for natural neuroprotective agents to treat various neuron injury-related diseases[J]. Front Pharmacol, 2023, 14:1134989.
[39]
Chou X, Li X, Ma K, et al. N-methyl-d-aspartate receptor 1 activation mediates cadmium-induced epithelial-mesenchymal transition in proximal tubular cells[J]. Sci Total Environ, 2023,904:166955.
[40]
Wang M, Liang X, Cheng M, et al. Homocysteine enhances neural stem cell autophagy in in vivo and in vitro model of ischemic stroke[J]. Cell Death Dis, 2019, 10(8):561.
[41]
Li M, Zhang Y, Yu G, et al. Mitochondria-associated endoplasmic reticulum membranes tethering protein VAPB-PTPIP51 protects against ischemic stroke through inhibiting the activation of autophagy[J]. CNS Neurosci Ther, 2024, 30(4):e14707.
[42]
Zhou H, He Y, Zhu J, et al. Guhong injection protects against apoptosis in cerebral ischemia by maintaining cerebral microvasculature and mitochondrial integrity through the PI3K/AKT pathway[J]. Front Pharmacol, 2021, 12:650983.
[43]
Xu YP, Han F, Tan J. Edaravone protects the retina against ischemia/reperfusion-induced oxidative injury through the PI3K/Akt/Nrf2 pathway[J]. Mol Med Rep, 2017, 16(6):9210-9216.
[44]
Xiao T, Chen S, Yan G, et al. Cystathionine gamma-lyase inhibits mitochondrial oxidative stress by releasing H(2)S nearby through the AKT/NRF2 signaling pathway[J]. Front Pharmacol, 2024,15:1374720.
[45]
Maimaiti M, Li C, Cheng M, et al. Blocking cGAS-STING pathway promotes post-stroke functional recovery in an extended treatment window via facilitating remyelination[J]. Med, 2024,5(6):622-644.
[46]
Passarella S, Kethiswaran S, Brandes K, et al. Alteration of cGASSTING signaling pathway components in the mouse cortex and hippocampus during healthy brain aging[J]. Front Aging Neurosci,2024, 16:1429005.
[47]
Liao Y, Cheng J, Kong X, et al. HDAC3 inhibition ameliorates ischemia/reperfusion-induced brain injury by regulating the microglial cGAS-STING pathway[J]. Theranostics, 2020,10(21):9644-9662.
[48]
Hu X, Leak RK, Shi Y, et al. Microglial and macrophage polarization-new prospects for brain repair[J]. Nat Rev Neurol,2015, 11(1):56-64.
[49]
Liu Z, Wang M, Wang X, et al. XBP1 deficiency promotes hepatocyte pyroptosis by impairing mitophagy to activate mtDNAcGAS-STING signaling in macrophages during acute liver injury[J]. Redox Biol, 2022, 52:102305.
[50]
Li Q, Yang L, Wang K, et al. Oxidized mitochondrial DNA activates the cGAS-STING pathway in the neuronal intrinsic immune system after brain ischemia-reperfusion injury[J].Neurotherapeutics, 2024, 21(4):e368.
[51]
Chen J, Luo Y, Li Y, et al. Chlorogenic acid attenuates oxidative stress-induced intestinal epithelium injury by Co-regulating the PI3K/Akt and IκBα/NF-κB[J]. Antioxidants (Basel), 2021,10(12):1915.
[52]
Vivarini ADC, Calegari-Silva TC, Saliba AM, et al. Systems approach reveals nuclear factor erythroid 2-related factor 2/protein kinase R crosstalk in human cutaneous leishmaniasis[J]. Front Immunol, 2017, 8:1127.
[53]
Han L, Zheng Y, Deng J, et al. SARS-CoV-2 ORF10 antagonizes STING-dependent interferon activation and autophagy[J]. J Med Virol, 2022, 94(11):5174-5188.
[54]
Yang H, Wang H, Ren J, et al. cGAS is essential for cellular senescence[J]. Proc Natl Acad Sci U S A, 2017,114(23):E4612-E4620.
[55]
Yan M, Li Y, Luo Q, et al. Mitochondrial damage and activation of the cytosolic DNA sensor cGAS-STING pathway lead to cardiac pyroptosis and hypertrophy in diabetic cardiomyopathy mice[J].Cell Death Discov, 2022, 8(1):258.
[56]
Verfaillie T, Rubio N, Garg AD, et al. PERK is required at the ERmitochondrial contact sites to convey apoptosis after ROS-based ER stress[J]. Cell Death Differ, 2012, 19(11):1880-1891.
[1] 王峰, 曲更宝, 王文彦, 代艳亭. 罗汉果醇对人乳腺癌细胞自噬和凋亡的影响[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(01): 27-32.
[2] 余静雅, 石玉兰, 向利娟, 陈城, 罗钰堞. 老年慢性创面患者衰弱现状及影响因素分析[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(02): 141-147.
[3] 黄凤, 李文润, 冉永红, 谌莉, 刘泓伽, 王秋池, 郝玉徽. 贫铀对线粒体损伤影响的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(02): 179-183.
[4] 潘霞, 李琳, 朱磊, 代超, 庞乐. 汉中社区老年人口腔衰弱风险关联性分析与列线图模型构建[J/OL]. 中华口腔医学研究杂志(电子版), 2025, 19(01): 25-32.
[5] 陈浩, 林梁, 邹来宾, 郭胜蓝. 成石饮食诱发胆结石及肝损伤机制的研究[J/OL]. 中华普通外科学文献(电子版), 2025, 19(01): 42-47.
[6] 柳娟, 刘秀峰, 张琛. 右美托咪定的不同给药途径对老年疝修补术患者认知功能的影响[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(02): 210-213.
[7] 王俊毅, 薛振峰. 可吸收补片在老年开放腹股沟疝患者中的应用[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(01): 88-91.
[8] 李华志, 许臣, 吴永哲. 老年患者经腹腹膜前疝修补术后发生并发症的危险因素分析[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(01): 96-98.
[9] 郑希彦, 吴润鹏, 杜飞, 谢玉芬, 王平根, 张广权, 翟航, 何函樨, 李瑞曦. 基于生信分析SLC29A3 在肝癌中的表达及临床意义[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(02): 290-295.
[10] 蒙柄成, 朱海, 任洪冰, 毛伟民, 韦德令, 徐邦浩, 王继龙, 金宗睿, 蓝祝晶, 黄柯豫, 卢婷婷, 张灵, 郭雅, 文张. IGF-1 介导FOXO 信号通路在大鼠ALPPS 术后肝再生中的作用[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 118-125.
[11] 王飞, 张凯, 姚占胜. 一种信号通路水平结直肠癌细胞系选择新视角探讨[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(02): 179-183.
[12] 朱蓉蓉, 王俭勤. 通过调控内质网应激信号通路治疗糖尿病肾病的研究进展[J/OL]. 中华肾病研究电子杂志, 2025, 14(02): 104-109.
[13] 曾春琴, 沈强, 周厚利, 李双龙, 胡高铭. 糖尿病视网膜病变中视网膜色素上皮脂代谢异常的研究进展[J/OL]. 中华眼科医学杂志(电子版), 2025, 15(01): 50-54.
[14] 赵鸿鹰, 江荣科, 王宇, 朱梅, 李艳芳. CEACAM19调控PI3K/AKT信号通路对胃癌发病及预后判断的研究[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(01): 16-22.
[15] 张晓丽, 张澍田. 老年人结直肠内镜黏膜下剥离术出血的危险因素分析[J/OL]. 中华临床医师杂志(电子版), 2025, 19(02): 95-101.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?