[1] |
GBD 2021 Diseases and Injuries Collaborators. Global incidence,prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990-2021: A systematic analysis for the Global Burden of Disease Study 2021[J]. Lancet, 2024,403(10440):2133-2161.
|
[2] |
Fan J, Li X, Yu X, et al. Global burden, risk factor analysis, and prediction study of ischemic stroke, 1990-2030[J]. Neurology,2023, 101(2):e137-e150.
|
[3] |
Barrington J, Lemarchand E, Allan SM. A brain in flame; do inflammasomes and pyroptosis influence stroke pathology?[J].Brain Pathol, 2017, 27(2): 205-212.
|
[4] |
GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet Neurol, 2019, 18(5): 459-480.
|
[5] |
Fonarow GC, Reeves MJ, Zhao X, et al. Age-related differences in characteristics, performance measures, treatment trends, and outcomes in patients with ischemic stroke[J]. Circulation, 2010,121(7):879-891.
|
[6] |
Lo JW, Crawford JD, Desmond DW, et al. Long-term cognitive decline after stroke: An individual participant data Metaanalysis[J]. Stroke, 2022, 53(4):1318-1327.
|
[7] |
Motlagh NJ, Wang C, Kim HH, et al. Aging intensifies myeloperoxidase activity after ischemic stroke[J]. Aging Dis,2024, 15(6):2650-2664.
|
[8] |
An H, Zhou B, Ji X. Mitochondrial quality control in acute ischemic stroke[J]. J Cereb Blood Flow Metab, 2021, 41(12):3157-3170.
|
[9] |
Tran M, Reddy PH. Defective autophagy and mitophagy in aging and Alzheimer's disease[J]. Front Neurosci, 2020, 14:612757.
|
[10] |
Silva-Palacios A, Ostolga-Chavarria M, Zazueta C, et al. Nrf2:Molecular and epigenetic regulation during aging[J]. Ageing Res Rev, 2018, 47:31-40.
|
[11] |
Slezak J, Kura B, Lebaron TW, et al. Oxidative stress and pathways of molecular hydrogen effects in medicine[J]. Curr Pharm Des, 2021, 27(5):610-625.
|
[12] |
Salminen A, Kaarniranta K, Kauppinen A. Age-related changes in AMPK activation: Role for AMPK phosphatases and inhibitory phosphorylation by upstream signaling pathways[J]. Ageing Res Rev, 2016, 28:15-26.
|
[13] |
Bao C, Yang Z, Li Q, et al. Aerobic endurance exercise ameliorates renal vascular sclerosis in aged mice by regulating PI3K/AKT/mTOR signaling pathway[J]. DNA Cell Biol, 2020, 39(2):310-320.
|
[14] |
Li J, Chen K, Li X, et al. Mechanistic insights into the alterations and regulation of the AKT signaling pathway in diabetic retinopathy[J]. Cell Death Discov, 2023, 9(1):418.
|
[15] |
Sun B, Li L, Luo J. Brain endothelial cyclic GMP-AMP synthase(cGAS)-stimulator of interferon genes (STING) signaling pathway in aging and neurodegeneration[J]. Neural Regen Res, Epub 2024.07.29.
|
[16] |
Kholoshina GI, Severinenko RM, Deriabina TI, et al. Complement and lysozyme indices in acute pneumonia and chronic bronchitis[J]. Vrach Delo, 1986(4):60-62.
|
[17] |
Li L, Meng F, Li D. Downregulation of Nrf2 in the hippocampus contributes to postoperative cognitive dysfunction in aged rats by sensitizing oxidative stress and neuroinflammation[J]. Oxid Med Cell Longev, 2023, 2023:7272456.
|
[18] |
Yang Q, Li M, Liu J, et al. Intermittent fasting ameliorates neuronal ferroptosis and cognitive impairment in mice after traumatic brain injury[J]. Nutrition, 2023, 109:111992.
|
[19] |
Fan W, Chen H, Li M, et al. NRF2 activation ameliorates bloodbrain barrier injury after cerebral ischemic stroke by regulating ferroptosis and inflammation[J]. Sci Rep, 2024, 14(1):5300.
|
[20] |
Sun YY, Zhu HJ, Zhao RY, et al. Remote ischemic conditioning attenuates oxidative stress and inflammation via the Nrf2/HO-1 pathway in MCAO mice[J]. Redox Biol, 2023, 66:102852.
|
[21] |
Kang JB, Koh PO. Retinoic acid alleviates the reduction of Akt and Bad phosphorylation and regulates Bcl-2 family protein interactions in animal models of ischemic stroke[J]. PLoS One,2024, 19(5):e303213.
|
[22] |
Esteras N, Blacker TS, Zherebtsov EA, et al. Nrf2 regulates glucose uptake and metabolism in neurons and astrocytes[J].Redox Biol, 2023, 62:102672.
|
[23] |
Sabouny R, Fraunberger E, Geoffrion M, et al. The keap1-Nrf2 stress response pathway promotes mitochondrial hyperfusion through degradation of the mitochondrial fission protein drp1[J].Antioxid Redox Signal, 2017, 27(18):1447-1459.
|
[24] |
Yu X, Dang L, Zhang R, et al. Therapeutic potential of targeting the PERK signaling pathway in ischemic stroke[J].Pharmaceuticals (Basel), 2024, 17(3):353.
|
[25] |
Lahiri A, Walton JC, Zhang N, et al. Astrocytic deletion of protein kinase R-like ER kinase (PERK) does not affect learning and memory in aged mice but worsens outcome from experimental stroke[J]. J Neurosci Res, 2023, 101(10):1586-1610.
|
[26] |
Ye Q, Jo J, Wang CY, et al. Astrocytic Slc4a4 regulates bloodbrain barrier integrity in healthy and stroke brains via a CCL2-CCR2 pathway and NO dysregulation[J]. Cell Rep, 2024, 43(5):114193.
|
[27] |
Liu Y, Cui F, Xu A, et al. Interaction between the PERK/ATF4 branch of the endoplasmic reticulum stress and mitochondrial onecarbon metabolism regulates neuronal survival after intracerebral hemorrhage[J]. Int J Biol Sci, 2024, 20(11):4277-4296.
|
[28] |
Kim HJ, Joe Y, Rah SY, et al. Carbon monoxide-induced TFEB nuclear translocation enhances mitophagy/mitochondrial biogenesis in hepatocytes and ameliorates inflammatory liver injury[J]. Cell Death Dis, 2018, 9(11):1060.
|
[29] |
Creamer TP. Calcineurin[J]. Cell Commun Signal, 2020,18(1):137.
|
[30] |
Wang X, Fang Y, Huang Q, et al. An updated review of autophagy in ischemic stroke: From mechanisms to therapies[J]. Exp Neurol,2021, 340:113684.
|
[31] |
Li HQ, Xia SN, Xu SY, et al. gamma-Glutamylcysteine alleviates ischemic stroke-induced neuronal apoptosis by inhibiting ROSmediated endoplasmic reticulum stress[J]. Oxid Med Cell Longev,2021, 2021:2961079.
|
[32] |
Wu Y, Fan X, Chen S, et al. Geraniol-mediated suppression of endoplasmic reticulum stress protects against cerebral ischemiareperfusion injury via the PERK-ATF4-CHOP pathway[J]. Int J Mol Sci, 2022, 24(1):544.
|
[33] |
Dhir N, Jain A, Sharma AR, et al. PERK inhibitor, GSK2606414,ameliorates neuropathological damage, memory and motor functional impairments in cerebral ischemia via PERK/p-eIF2a/ATF4/CHOP signaling[J]. Metab Brain Dis, 2023, 38(4):1177-1192.
|
[34] |
Almeida LM, Pinho BR, Duchen MR, et al. The PERKs of mitochondria protection during stress: Insights for PERK modulation in neurodegenerative and metabolic diseases[J]. Biol Rev Camb Philos Soc, 2022, 97(5):1737-1748.
|
[35] |
Prinz WA, Toulmay A, Balla T. The functional universe of membrane contact sites[J]. Nat Rev Mol Cell Biol, 2020, 21(1):7-24.
|
[36] |
Khezri MR, Mohammadipanah S, Ghasemnejad-Berenji M. The pharmacological effects of Berberine and its therapeutic potential in different diseases: Role of the phosphatidylinositol 3-kinase/AKT signaling pathway[J]. Phytother Res, 2024, 38(1):349-367.
|
[37] |
Li J, Shan W, Zuo Z. Age-related upregulation of carboxyl terminal modulator protein contributes to the decreased brain ischemic tolerance in older rats[J]. Mol Neurobiol, 2018, 55(7):6145-6154.
|
[38] |
Chen Y, Hsu C, Chen X, et al. Editorial: Regulation of PI3K/Akt signaling pathway: A feasible approach for natural neuroprotective agents to treat various neuron injury-related diseases[J]. Front Pharmacol, 2023, 14:1134989.
|
[39] |
Chou X, Li X, Ma K, et al. N-methyl-d-aspartate receptor 1 activation mediates cadmium-induced epithelial-mesenchymal transition in proximal tubular cells[J]. Sci Total Environ, 2023,904:166955.
|
[40] |
Wang M, Liang X, Cheng M, et al. Homocysteine enhances neural stem cell autophagy in in vivo and in vitro model of ischemic stroke[J]. Cell Death Dis, 2019, 10(8):561.
|
[41] |
Li M, Zhang Y, Yu G, et al. Mitochondria-associated endoplasmic reticulum membranes tethering protein VAPB-PTPIP51 protects against ischemic stroke through inhibiting the activation of autophagy[J]. CNS Neurosci Ther, 2024, 30(4):e14707.
|
[42] |
Zhou H, He Y, Zhu J, et al. Guhong injection protects against apoptosis in cerebral ischemia by maintaining cerebral microvasculature and mitochondrial integrity through the PI3K/AKT pathway[J]. Front Pharmacol, 2021, 12:650983.
|
[43] |
Xu YP, Han F, Tan J. Edaravone protects the retina against ischemia/reperfusion-induced oxidative injury through the PI3K/Akt/Nrf2 pathway[J]. Mol Med Rep, 2017, 16(6):9210-9216.
|
[44] |
Xiao T, Chen S, Yan G, et al. Cystathionine gamma-lyase inhibits mitochondrial oxidative stress by releasing H(2)S nearby through the AKT/NRF2 signaling pathway[J]. Front Pharmacol, 2024,15:1374720.
|
[45] |
Maimaiti M, Li C, Cheng M, et al. Blocking cGAS-STING pathway promotes post-stroke functional recovery in an extended treatment window via facilitating remyelination[J]. Med, 2024,5(6):622-644.
|
[46] |
Passarella S, Kethiswaran S, Brandes K, et al. Alteration of cGASSTING signaling pathway components in the mouse cortex and hippocampus during healthy brain aging[J]. Front Aging Neurosci,2024, 16:1429005.
|
[47] |
Liao Y, Cheng J, Kong X, et al. HDAC3 inhibition ameliorates ischemia/reperfusion-induced brain injury by regulating the microglial cGAS-STING pathway[J]. Theranostics, 2020,10(21):9644-9662.
|
[48] |
Hu X, Leak RK, Shi Y, et al. Microglial and macrophage polarization-new prospects for brain repair[J]. Nat Rev Neurol,2015, 11(1):56-64.
|
[49] |
Liu Z, Wang M, Wang X, et al. XBP1 deficiency promotes hepatocyte pyroptosis by impairing mitophagy to activate mtDNAcGAS-STING signaling in macrophages during acute liver injury[J]. Redox Biol, 2022, 52:102305.
|
[50] |
Li Q, Yang L, Wang K, et al. Oxidized mitochondrial DNA activates the cGAS-STING pathway in the neuronal intrinsic immune system after brain ischemia-reperfusion injury[J].Neurotherapeutics, 2024, 21(4):e368.
|
[51] |
Chen J, Luo Y, Li Y, et al. Chlorogenic acid attenuates oxidative stress-induced intestinal epithelium injury by Co-regulating the PI3K/Akt and IκBα/NF-κB[J]. Antioxidants (Basel), 2021,10(12):1915.
|
[52] |
Vivarini ADC, Calegari-Silva TC, Saliba AM, et al. Systems approach reveals nuclear factor erythroid 2-related factor 2/protein kinase R crosstalk in human cutaneous leishmaniasis[J]. Front Immunol, 2017, 8:1127.
|
[53] |
Han L, Zheng Y, Deng J, et al. SARS-CoV-2 ORF10 antagonizes STING-dependent interferon activation and autophagy[J]. J Med Virol, 2022, 94(11):5174-5188.
|
[54] |
Yang H, Wang H, Ren J, et al. cGAS is essential for cellular senescence[J]. Proc Natl Acad Sci U S A, 2017,114(23):E4612-E4620.
|
[55] |
Yan M, Li Y, Luo Q, et al. Mitochondrial damage and activation of the cytosolic DNA sensor cGAS-STING pathway lead to cardiac pyroptosis and hypertrophy in diabetic cardiomyopathy mice[J].Cell Death Discov, 2022, 8(1):258.
|
[56] |
Verfaillie T, Rubio N, Garg AD, et al. PERK is required at the ERmitochondrial contact sites to convey apoptosis after ROS-based ER stress[J]. Cell Death Differ, 2012, 19(11):1880-1891.
|