切换至 "中华医学电子期刊资源库"

中华老年病研究电子杂志 ›› 2025, Vol. 12 ›› Issue (01) : 22 -29. doi: 10.3760/cma.j.issn.2095-8757.2025.01.005

临床研究

基于胆固醇代谢相关基因构建前列腺癌复发的风险预测模型
石继开1,2, 王平1, 陈军3,()   
  1. 1. 310003 杭州,浙江大学医学院附属第一医院泌尿外科
    2. 310058 杭州,浙江大学医学院
    3. 310013 杭州,浙江大学医学院附属浙江医院泌尿外科
  • 收稿日期:2024-11-26 出版日期:2025-02-28
  • 通信作者: 陈军
  • 基金资助:
    浙江省领雁科技计划项目(2024C03165)

Construction of a risk prediction model for prostate cancer recurrence based on cholesterol metabolism-related genes

Jikai Shi1,2, Ping Wang1, Jun Chen3,()   

  1. 1. Department of Urology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
    2. Zhejiang University School of Medicine, Hangzhou 310058, China
    3. Department of Urology, the Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
  • Received:2024-11-26 Published:2025-02-28
  • Corresponding author: Jun Chen
引用本文:

石继开, 王平, 陈军. 基于胆固醇代谢相关基因构建前列腺癌复发的风险预测模型[J/OL]. 中华老年病研究电子杂志, 2025, 12(01): 22-29.

Jikai Shi, Ping Wang, Jun Chen. Construction of a risk prediction model for prostate cancer recurrence based on cholesterol metabolism-related genes[J/OL]. Chinese Journal of Geriatrics Research(Electronic Edition), 2025, 12(01): 22-29.

目的

分析胆固醇代谢相关基因在前列腺癌中的表达变化,并构建前列腺癌复发风险预测模型。

方法

从癌症基因组图谱数据库中获取前列腺癌病例样本的RNA测序数据及临床数据,从分子特征数据库中检索胆固醇代谢相关基因。通过差异表达分析和加权基因共表达网络分析,确定可作为前列腺癌复发生物标志物的胆固醇代谢相关基因。利用单因素Cox分析以及最小绝对收缩和选择算法对基因进行筛选,构建风险模型并进行验证。分析风险评分与前列腺癌患者临床特征之间的关联,并采用单因素和多因素Cox回归分析确定可独立预测前列腺癌复发的因素。基于独立预测因素绘制列线图,并采用校准曲线评估列线图的预测效果。

结果

3种胆固醇代谢相关基因COMPMYOCDACTC1是前列腺癌复发的生物标志物。基于这3种基因构建的风险模型提示,高风险组的复发率高于低风险组(P<0.05),其预测前列腺癌患者1、3、5年复发的曲线下面积均超过 0.6。基于风险评分和T分期构建的列线图模型,预测前列腺癌患者1、3、5年复发率的校准曲线斜率接近 1,预测效能满意。

结论

将胆固醇代谢相关基因作为前列腺癌复发的生物标志物具有巨大潜力,以此构建的风险预测模型具有可靠的预测能力。

Objective

To analyze the expression changes of cholesterol metabolism-related genes in prostate cancer, and to construct a risk prediction model for prostate cancer recurrence.

Methods

RNA sequencing data and clinical data of prostate cancer case samples were obtained from the Cancer Genome Atlas database, and cholesterol metabolism-related genes were retrieved from the molecular characteristics database. Cholesterol metabolism-related genes as biomarkers of prostate cancer recurrence were identified by differential expression analysis and weighted gene co-expression network analysis. univariate Cox analysis and LASSO algorithm were used to further screen the genes, and a risk prediction model for prostate cancer recurrence was established and validated. The association between risk scores and clinical characteristics of prostate cancer patients were analyzed, and the univariate and multivariate Cox regression analyses were performed to identify independent predictors of prostate cancer recurrence. A nomogram was developed based on the independent predictors, and its predictive performance was evaluated using calibration curves.

Results

Three cholesterol metabolism-related genes, COMPMYOCD and ACTC1, were identified as biomarkers for prostate cancer recurrence. The risk model was constructed, and the high-risk group had a significantly higher probability of recurrence than the low-risk group (P < 0.05). The area under the curve for predicting 1-, 3-, and 5-year recurrence in prostate cancer patients exceeded 0.6. The nomogram incorporating the risk score and T-stage demonstrated excellent predictive accuracy, with calibration curve slopes approaching 1, indicating satisfactory predictive performance.

Conclusion

This study confirms the potential of cholesterol metabolism-related genes as biomarkers for prostate cancer recurrence and lays the foundation for the establishment of a novel risk model with powerful stratification capabilities and clinical utility for personalized treatment.

图1 癌症基因组图谱队列中差异表达基因和关键模块基因筛选结果。1A:火山图显示前列腺癌与正常样本之间的差异表达基因;1B:热图显示模块与CMRG分数之间的相关性 注:CMRG指胆固醇代谢相关基因
图2 基于前列腺癌复发相关胆固醇代谢相关基因构建的蛋白质-蛋白质相互作用网络
图3 单因素Cox回归分析提示与前列腺癌复发明显相关的9个核心胆固醇代谢相关基因
图4 前列腺癌复发风险模型在训练集和验证集中的验证结果。4A:TCGA数据库中前列腺癌复发患者不同风险分层的分布情况;4B:TCGA数据库中不同风险分层生物标志物的表达情况;4C:TCGA数据库中不同风险分层的Kaplan-Meier生存曲线分析;4D:ROC曲线分析预测模型第1、3、5年的复发风险;4E-4H:使用GSE70770数据集验证风险模型结果 注:TCGA指癌症基因组图谱;ROC曲线指受试者操作特征曲线
图5 前列腺癌复发的独立影响因素分析和列线图的构建。5A:评估前列腺癌患者临床亚型间的风险评分差异;5B、5C:单因素和多因素Cox回归分析确定前列腺癌复发的独立影响因素;5D:基于确定的独立影响因素构建列线图;5E:列线图的校准曲线
[1]
Blas L, Onozawa M, Shiota M, et al. Long-term outcomes of androgen deprivation therapy in prostate cancer among Japanese men over 80 years old[J]. Cancer Sci, 2021, 112(8):3074-3082.
[2]
Rawla P. Epidemiology of prostate cancer[J]. World J Oncol,2019, 10(2):63-89.
[3]
Siegel R, Ma J, Zou Z, et al. Cancer statistics, 2014[J]. CA Cancer J Clin, 2014, 64(1):9-29.
[4]
Banuelos CA, Tavakoli I, Tien AH, et al. Sintokamide a is a novel antagonist of androgen receptor that uniquely binds activation function-1 in its amino-terminal domain[J]. J Biol Chem, 2016,291(42):22231-22243.
[5]
Jetty S, Loftus JR, Patel A, et al. Prostate cancer-PET imaging update[J]. Cancers (Basel), 2023, 15(3):796.
[6]
Macedo-Silva C, Benedetti R, Ciardiello F, et al. Epigenetic mechanisms underlying prostate cancer radioresistance[J]. Clin Epigenetics, 2021, 13(1):125.
[7]
Giunchi F, Fiorentino M, Loda M. The Metabolic Landscape of Prostate Cancer[J]. Eur Urol Oncol, 2019, 2(1):28-36.
[8]
Twiddy AL, Leon CG, Wasan KM. Cholesterol as a potential target for castration-resistant prostate cancer[J]. Pharm Res, 2011,28(3):423-437.
[9]
Xu H, Zhou S, Tang Q, et al. Cholesterol metabolism: New functions and therapeutic approaches in cancer[J]. Biochim Biophys Acta Rev Cancer, 2020,1874(1):188394.
[10]
Heir T, Falk RS, Robsahm TE, et al. Cholesterol and prostate cancer risk: A long-term prospective cohort study[J]. BMC Cancer,2016, 16:643.
[11]
Wei C, Tian L, Jia B, et al. Association between Serum Triglycerides and Prostate Specific Antigen (PSA) among U.S. males: National health and nutrition examination survey(NHANES), 2003-2010[J]. Nutrients, 2022,14(7).
[12]
Hänzelmann S, Castelo R, Guinney J. GSVA: Gene set variation analysis for microarray and RNA-seq data[J]. BMC Bioinformatics, 2013, 14:7.
[13]
Russo GI, Asmundo MG, Lo Giudice A, et al. Is there a role of warburg effect in prostate cancer aggressiveness?Analysis of expression of enzymes of lipidic metabolism by immunohistochemistry in prostate cancer patients (DIAMOND Study)[J]. Cancers (Basel), 2023, 15(3).
[14]
Dambal S, Howard LE, Allott EH, et al. Serum lipids prior to starting androgen deprivation therapy and risk of castration resistant prostate cancer and metastasis: Results from the SEARCH database[J]. J Urol, 2020, 203(1):120-127.
[15]
Han W, Gao S, Barrett D, et al. Reactivation of androgen receptorregulated lipid biosynthesis drives the progression of castrationresistant prostate cancer. Oncogene[J]. 2018, 37(6):710-721.
[16]
Revilla G, Cedó L, Tondo M, et al. LDL, HDL and endocrinerelated cancer: From pathogenic mechanisms to therapies[J].Semin Cancer Biol, 2021, 73:134-157.
[17]
Kosacka J, Nowicki M, Klöting N, et al. COMP-angiopoietin-1 recovers molecular biomarkers of neuropathy and improves vascularisation in sciatic nerve of ob/ob mice[J]. PLoS One, 2012,7(3):e32881.
[18]
Xia XD, Yu XH, Chen LY, et al. Myocardin suppression increases lipid retention and atherosclerosis via downregulation of ABCA1 in vascular smooth muscle cells[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2021, 1866(4):158824.
[19]
Gu C, Yang Z, Tan H, et al. Decreased plasma COMP and increased plasma CTX-II levels in a Chinese pseudoachondroplasia family with novel COMP mutation[J]. Biomed Res Int, 2017,2017:5809787.
[20]
Chen J, Xi J, Tian Y, et al. Identification, prioritization, and evaluation of glycoproteins for aggressive prostate cancer using quantitative glycoproteomics and antibody-based assays on tissue specimens[J]. Proteomics, 2013, 13(15):2268-2277.
[21]
Zhou L, Liu Y, Lu L, et al. Cardiac gene activation analysis in mammalian non-myoblasic cells by Nkx2-5, Tbx5, Gata4 and Myocd[J]. PLoS One, 2012, 7(10):e48028.
[22]
Tong X, Wang S, Lei Z, et al. MYOCD and SMAD3/SMAD4 form a positive feedback loop and drive TGF-β-induced epithelialmesenchymal transition in non-small cell lung cancer[J].Oncogene, 2020, 39(14):2890-2904.
[23]
Shi X, Feng D, Han P, et al. Ferroptosis-related ACSL3 and ACTC1 predict metastasis-free survival for prostate cancer patients undergoing radical radiotherapy[J]. Asian J Surg, 2023,46(6):2489-2290.
[24]
Jiang HK, Qiu GR, Li-Ling J, et al. Reduced ACTC1 expression might play a role in the onset of congenital heart disease by inducing cardiomyocyte apoptosis[J]. Circ J, 2010, 74(11):2410-2418.
[25]
Dong P, Flores J, Pelton K, et al. Prohibitin is a cholesterolsensitive regulator of cell cycle transit[J]. J Cell Biochem, 2010,111:1367-1374.
[26]
Huang L, Xu Z, Xie Y, et al. Comprehensive characterization of ageing-relevant subtypes associated with different tumorigenesis and tumor microenvironment in prostate cancer[J]. Front Mol Biosci, 2022, 9:803474.
[1] 明昊, 宋宏萍, 白誉誉, 党晓智, 赵阳, 程燕妮, 王琪, 肖迎聪. 自动乳腺超声联合临床病理特征预测Luminal B 型乳腺癌术后复发风险的临床研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(04): 337-347.
[2] 丁天宇, 白新娜, 王雅丽, 申婷, 张剑英. 口腔-神经疾病研究中的秀丽隐杆线虫阿尔茨海默病模型转录组特征分析[J/OL]. 中华口腔医学研究杂志(电子版), 2025, 19(03): 160-169.
[3] 王珂, 岳育民, 武珍珍, 许泽宇, 惠晓辉, 赵云, 窦维佳, 赵青川. 腹腔镜经自然腔道手术对结直肠癌患者肠道功能及远期效果的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(04): 413-416.
[4] 袁强, 向文瑞, 吕远, 闫璋哲, 朱含放, 陈光, 孙亮, 陈纲, 赵锁. 基于随机生存森林的胃肠道间质瘤无复发生存期预测模型研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(04): 438-441.
[5] 赵晨皓, 张序东, 杨浚沫, 周何. 血清肿瘤标志物对结直肠癌患者术后复发的预测效能研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(04): 467-470.
[6] 李健雄, 周江, 李涛, 乔培宇, 汤鑫, 董明. 两种不同保脾胰体尾切除术治疗胰体尾肿瘤的临床比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(03): 325-328.
[7] 王占奎, 陈治远, 孙闻晖, 杨庆玲, 杨小斌. 术前免疫炎症指数及AFU水平对肝癌患者介入术后早期复发的预测研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(03): 247-250.
[8] 李华志, 孙海涛, 曹广, 张雅静. 基于膜解剖的完整系膜切除+D2根治术在进展期胃癌治疗中的应用[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(03): 262-265.
[9] 廖俊豪, 周理林, 曾健文. 广东省医学会泌尿外科疑难病例多学科会诊(第25期)——膀胱癌根治术后盆腔复发[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(03): 390-394.
[10] 詹文豪, 吾米尔·吾斯曼江, 刘仁, 曾小兰, 陈俊星, 王宗任. 经尿道膀胱肿瘤整块切除术与电切术治疗高危非肌层浸润性膀胱癌的比较[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(03): 309-314.
[11] 郑秉礼, 彭洁, 孟塬. KRAS基因突变对可切除胰腺癌临床预后的影响[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(03): 456-462.
[12] 曹聪, 董伟, 徐良斌, 付雍. 成人肝母细胞瘤长期存活一例[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(03): 471-474.
[13] 龙吟, 何晓东, 廖建国, 黄珏, 张磊. 高复发风险肝癌患者术后靶向免疫治疗的安全性及疗效[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(03): 379-386.
[14] 王飞, 张凯, 姚占胜. 一种信号通路水平结直肠癌细胞系选择新视角探讨[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(02): 179-183.
[15] 张睿敏, 董哲毅, 王倩, 陈香美. 肾小管间质纤维化生物标志物研究进展[J/OL]. 中华肾病研究电子杂志, 2025, 14(02): 91-96.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?