切换至 "中华医学电子期刊资源库"

中华老年病研究电子杂志 ›› 2024, Vol. 11 ›› Issue (04) : 31 -37. doi: 10.3760/cma.j.issn.2095-8757.2024.04.006

综述

短链脂肪酸在肌少症发病机制中的作用
王广宁1, 李玉杰2, 高坤范1, 刘慧松3,()   
  1. 1. 266011 康复大学青岛医院(青岛市市立医院)重症医学科
    2. 266000 青岛,青岛大学附属妇女儿童医院生殖医学中心
    3. 266011 康复大学青岛医院(青岛市市立医院)护理部
  • 收稿日期:2024-08-17 出版日期:2024-11-28
  • 通信作者: 刘慧松
  • 基金资助:
    青岛市医药卫生科研指导项目(2024-WJKY020)

Research progress on the role of short-chain fatty acids in the pathogenesis of sarcopenia

Guangning Wang1, Yujie Li2, Kunfan Gao1, Huisong Liu3,()   

  1. 1. Department of Critical Care Medicine,Qingdao Hospital,University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital),Qingdao 266011,China
    2. Reproductive Medicine Center,Women and Children's Hospital,Qingdao University,Qingdao 266000,China
    3. Department of Nuising,Qingdao Hospital,University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital),Qingdao 266011,China
  • Received:2024-08-17 Published:2024-11-28
  • Corresponding author: Huisong Liu
引用本文:

王广宁, 李玉杰, 高坤范, 刘慧松. 短链脂肪酸在肌少症发病机制中的作用[J/OL]. 中华老年病研究电子杂志, 2024, 11(04): 31-37.

Guangning Wang, Yujie Li, Kunfan Gao, Huisong Liu. Research progress on the role of short-chain fatty acids in the pathogenesis of sarcopenia[J/OL]. Chinese Journal of Geriatrics Research(Electronic Edition), 2024, 11(04): 31-37.

肌少症是一种与年龄相关的全身骨骼肌退行性疾病,严重影响老年人的生活质量和健康。近年来,肠道菌群与肌少症的相关研究越来越多,其中肠道菌群代谢物短链脂肪酸(SCFA)在肌少症发病中发挥了重要作用。SCFA 作为肠道菌群的重要代谢产物,参与肌肉质量和组成、炎症老化和免疫衰老、线粒体功能障碍与氧化应激、胰岛素抵抗、肝脏摄取和代谢、骨骼肌血流代谢等机制,直接或间接对肠道微生物-肌肉轴产生影响。基于SCFA 的上述作用,调节饮食和运动方式、补充益生菌和益生元可能可以作为肌少症的干预方式。本文从肠道代谢产物角度,综述SCFA 在肌少症发病机制中的潜在作用,以期为SCFA 的治疗提供新思路。

Sarcopenia is an age-related systemic skeletal muscle degenerative disease that seriously affects the quality of life and health of the elderly.In recent years, there have been an increasing number of studies on the relationship between intestinal flora and sarcopenia.Among them, shortchain fatty acids (SCFA), the metabolites of intestinal flora, play an important role in the pathogenesis of sarcopenia.SCFA are involved in muscle mass and composition, inflammaging aging and immune senescence, mitochondrial dysfunction and oxidative stress, insulin resistance, hepatic uptake and metabolism, and blood flow metabolism in skeletal muscle, which directly or indirectly affect the gut microbe-muscle axis.Based on the aforementioned effects of SCFA, modification of dietary and exercise regimens, and supplementation with probiotics and prebiotics may be able to serve as interventions for sarcopenia.This paper further explore the potential role of SCFA in the pathogenesis of sarcopenia, to provide new ideas for the treatment of sarcopenia.

[1]
崔华,王朝晖,吴剑卿,等.老年人肌少症防控干预中国专家共识(2023)[J].中华老年医学杂志,2023,42(2):144-153.
[2]
Sayer AA, Cruz-Jentoft A.Sarcopenia definition, diagnosis and treatment: Consensus is growing[J].Age Ageing, 2022,51(10):afac220.
[3]
顾一航,缪健,胡心怡,等.老年综合评估筛查高龄肌少症危险因素的研究[J].徐州医科大学学报,2023,43(1):7-13.
[4]
Papadopoulou SK.Sarcopenia: A contemporary health problem among older adult populations[J].Nutrients, 2020, 12(5):1293.
[5]
Ticinesi A, Mancabelli L, Tagliaferri S, et al.The gut-muscle axis in older subjects with low muscle mass and performance: A proof of concept study exploring fecal microbiota composition and function with shotgun metagenomics sequencing[J].Int J Mol Sci,2020, 21(23):8946.
[6]
Han DS, Wu WK, Liu PY, et al.Differences in the gut microbiome and reduced fecal butyrate in elders with low skeletal muscle mass[J].Clin Nutr, 2022, 41(7):1491-1500.
[7]
He Y, Cui W, Fang T, et al.Metabolites of the gut microbiota may serve as precise diagnostic markers for sarcopenia in the elderly[J].Front Microbiol, 2023, 14:1301805.
[8]
Rauf A, Khalil AA, Rahman UU, et al.Recent advances in the therapeutic application of short-chain fatty acids (SCFAs): An updated review[J].Crit Rev Food Sci Nutr, 2022, 62(22):6034-6054.
[9]
周张宁,张勤,归崎峰,等.肠道微生态与肌少症研究新进展[J].中华老年医学杂志,2022,41(5):610-613.
[10]
黄少玲,宋国丽.肠道菌群代谢物在阿尔茨海默病中的作用及机制[J].中华神经科杂志,2022,55(5):524-528.
[11]
徐秋月,段勇.肠道菌群在冠心病中的作用机制及生物标志物应用进展[J].中华检验医学杂志,2023,46(7):748-753.
[12]
陈影,桂明,李丽雅.短链脂肪酸在风湿免疫病发病机制中的研究进展[J].中华风湿病学杂志,2023,27(4):272-276.
[13]
黄俊杰,郭玺.肠道菌群及其代谢物与动脉粥样硬化的关系[J].中华心血管病杂志,2023,51(5):548-554.:
[14]
van der Hee B, Wells JM.Microbial regulation of host physiology by short-chain fatty acids[J].Trends Microbiol, 2021, 29(8):700-712.
[15]
Yan J, Pan Y, Shao W, et al.Beneficial effect of the short-chain fatty acid propionate on vascular calcification through intestinal microbiota remodelling[J].Microbiome, 2022, 10(1):195.
[16]
Deleu S, Machiels K, Raes J, et al.Short chain fatty acids and its producing organisms: An overlooked therapy for IBD[J]?EBioMedicine, 2021, 66:103293.
[17]
Wang Z, Liu J, Li F, et al.The gut-lung axis in severe acute pancreatitis-associated lung injury: The protection by the gut microbiota through short-chain fatty acids[J].Pharmacol Res,2022, 182:106321.
[18]
Liu P, Wang Y, Yang G, et al.The role of short-chain fatty acids in intestinal barrier function, inflammation, oxidative stress, and colonic carcinogenesis[J].Pharmacol Res, 2021, 165:105420.
[19]
Takahashi D, Hoshina N, Kabumoto Y, et al.Microbiota-derived butyrate limits the autoimmune response by promoting the differentiation of follicular regulatory T cells[J].EBioMedicine,2020, 58:102913.
[20]
He J, Zhang P, Shen L, et al.Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism[J].Int J Mol Sci, 2020, 21(17):6356.
[21]
Liu T, Sun Z, Yang Z, et al.Microbiota-derived short-chain fatty acids and modulation of host-derived peptides formation:Focused on host defense peptides[J].Biomed Pharmacother, 2023,162:114586.
[22]
Mann ER, Lam YK, Uhlig HH.Short-chain fatty acids: Linking diet, the microbiome and immunity[J].Nat Rev Immunol, 2024,24(8):577-595.
[23]
王子豪,王宇,杨鑫,等.肠道菌群与骨质疏松症相关分子机制的研究进展[J].中国微生态学杂志,2024,36(4):487-492.
[24]
Gonzalez-Gil AM, Elizondo-Montemayor L.The role of exercise in the interplay between myokines, hepatokines, osteokines,adipokines, and modulation of inflammation for energy substrate redistribution and fat mass loss: A review[J].Nutrients, 2020,12(6):1899.
[25]
He M, Wei W, Zhang Y, et al.Gut microbial metabolites SCFAs and chronic kidney disease[J].J Transl Med, 2024, 22(1):172.
[26]
Yang Z, Tang C, Sun X, et al.Protective effects of SCFAs on organ injury and gut microbiota modulation in heat-stressed rats[J].Ann Microbiol, 2024, 74:6.
[27]
Du Y, He C, An Y, et al.The role of short chain fatty acids in inflammation and body health[J].Int J Mol Sci, 2024, 25(13):7379.
[28]
Juban G.Transcriptional control of macrophage inflammatory shift during skeletal muscle regeneration[J].Semin Cell Dev Biol,2021, 119:82-88.
[29]
李新科,杨雪,张萱,等.短链脂肪酸对肠道屏障保护作用的研究进展[J].动物营养学报,2024,36(8):4861-4871.
[30]
孔健达,徐欣然,陈世娟,等.肠道菌群合成的短链脂肪酸对运动表现的改善作用[J].生理科学进展,2024,55(2):91-98.
[31]
Liao X, Wu M, Hao Y, et al.Exploring the preventive effect and mechanism of senile sarcopenia based on "gut-muscle axis"[J].Front Bioeng Biotechnol, 2020, 8:590869.
[32]
Pham NHT, Joglekar MV, Wong WKM, et al.Short-chain fatty acids and insulin sensitivity: A systematic review and metaanalysis[J].Nutr Rev, 2024, 82(2):193-209.
[33]
徐磊,倪震,张缨.运动、肠道菌群代谢物-短链脂肪酸与骨骼肌代谢调控[J].中国生物化学与分子生物学报,2022,38(1):1-7.
[34]
Frampton J, Murphy KG, Frost G, et al.Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function[J].Nat Metab, 2020, 2(9):840-848.
[35]
Hays KE, Pfaffinger JM, Ryznar R.The interplay between gut microbiota, short-chain fatty acids, and implications for host health and disease[J].Gut Microbes, 2024, 16(1):2393270.
[36]
Jeong DY, Ryu MS, Yang HJ, et al.γ-PGA-rich chungkookjang,short-term fermented soybeans: Prevents memory impairment by modulating brain insulin sensitivity, neuro-inflammation, and the gut-microbiome-brain axis[J].Foods, 2021, 10(2):221.
[37]
Chen Y, Zhou J, Wang L.Role and mechanism of gut microbiota in human disease[J].Front Cell Infect Microbiol, 2021, 11:625913.
[38]
Fraumene C, Manghina V, Cadoni E, et al.Caloric restriction promotes rapid expansion and long-lasting increase of Lactobacillus in the rat fecal microbiota[J].Gut Microbes, 2018,9(2):104-114.
[39]
Dong TS, Luu K, Lagishetty V, et al.A high protein calorie restriction diet alters the gut microbiome in obesity[J].Nutrients,2020, 12(10):3221.
[40]
Perry CA, Van Guilder GP, Kauffman A, et al.A calorie-restricted dash diet reduces body fat and maintains muscle strength in obese older adults[J].Nutrients, 2019, 12(1):102.
[41]
Park S, Shin BK.Intermittent fasting with a high-protein diet mitigated osteoarthritis symptoms by increasing lean body mass and reducing inflammation in osteoarthritic rats with Alzheimer's disease-like dementia[J].Br J Nutr, 2022, 127(1):55-67.
[42]
Ticinesi A, Lauretani F, Milani C, et al.Aging gut microbiota at the cross-road between nutrition, physical frailty, and sarcopenia:Is there a gut-muscle axis[J]? Nutrients, 2017, 9(12):1303.
[43]
Wu X, Unno T, Kang S, et al.A Korean-style balanced diet has a potential connection with Ruminococcaceae enterotype and reduction of metabolic syndrome incidence in Korean adults[J].Nutrients, 2021, 13(2):495.
[44]
Cruz-Jentoft AJ, Dawson Hughes B, Scott D, et al.Nutritional strategies for maintaining muscle mass and strength from middle age to later life: A narrative review[J].Maturitas, 2020, 132:57-64.
[45]
Donati Zeppa S, Agostini D, Gervasi M, et al.Mutual interactions among exercise, sport supplements and microbiota[J].Nutrients,2019, 12(1):17.
[46]
Yang A, Lv Q, Chen F, et al.The effect of vitamin D on sarcopenia depends on the level of physical activity in older adults[J].J Cachexia Sarcopenia Muscle, 2020, 11(3):678-689.
[47]
Huang WC, Hsu YJ, Li H, et al.Effect of Lactobacillus plantarum TWK10 on improving endurance performance in humans[J].Chin J Physiol, 2018, 61(3):163-170.
[48]
Huang WC, Lee MC, Lee CC, et al.Effect of Lactobacillus plantarum TWK10 on exercise physiological adaptation,performance, and body composition in healthy humans[J].Nutrients, 2019, 11(11):2836.
[49]
Chen YM, Wei L, Chiu YS, et al.Lactobacillus plantarum TWK10 supplementation improves exercise performance and increases muscle mass in mice[J].Nutrients, 2016, 8(4):205.
[50]
Wieërs G, Belkhir L, Enaud R, et al.How probiotics affect the microbiota[J].Front Cell Infect Microbiol, 2020, 9:454.
[51]
Liu C, Cheung WH, Li J, et al.Understanding the gut microbiota and sarcopenia: a systematic review[J].J Cachexia Sarcopenia Muscle, 2021, 12(6):1393-1407.
[52]
Rodriguez J, Delzenne NM.Modulation of the gut microbiotaadipose tissue-muscle interactions by prebiotics[J].J Endocrinol,2021, 249(1):R1-R23.
[1] 奚玲, 仝瀚文, 缪骥, 毛永欢, 沈晓菲, 杜峻峰, 刘晔. 基于肌少症构建的造口旁疝危险因素预测模型[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 48-51.
[2] 刘璐璐, 何羽. 慢性阻塞性肺病患者睡眠障碍的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 836-839.
[3] 廖江荣, 吴秀琳, 陈光春, 郭亮, 吕慈, 蔡俊, 陈夕. 急性主动脉夹层并发急性肺损伤的研究新进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 488-492.
[4] 马强. 衰弱和肌少症对肾功能评估的影响及干预策略[J/OL]. 中华肾病研究电子杂志, 2025, 14(01): 60-60.
[5] 赵静, 张嘉欣, 高言, 谢席胜. 微小病变肾病的发病机制及治疗研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 207-212.
[6] 孙婧婷, 李娜, 罗明辉, 高瑶瑶, 白义行, 朱国贞. 短链脂肪酸对小鼠缺血再灌注肾损伤的炎症及纤维化影响和作用机制研究[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 181-187.
[7] 孙鼎, 王滨, 陈香美, 陈意志. 热应激肾病的研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 170-176.
[8] 贾红艳, 王丹, 张冉冉, 马茜, 焦永红. 基于全外显子组测序探寻Möbius综合征发病机制的遗传学研究[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(03): 146-154.
[9] 安亚楠, 王端然, 郭甜甜, 武希润. 幽门螺杆菌阴性胃黏膜相关淋巴组织淋巴瘤的研究进展[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(03): 268-274.
[10] 刘琦, 王守凯, 王帅, 苏雨晴, 马壮, 陈海军, 司丕蕾. 乳腺癌肿瘤内微生物组的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 841-845.
[11] 奚培培, 周加军. 慢性肾脏病患者肌少症机制和诊治的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 491-495.
[12] 白璐, 李青霞, 冯一卓, 刘雪倩, 刘若琪, 曲卓敏, 赵凌霞. 丁酸盐治疗糖尿病肾病的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(03): 303-308.
[13] 厉若男, 宋进, 王玉忠. 带状疱疹后神经痛的发病机制和诊治研究进展[J/OL]. 中华诊断学电子杂志, 2024, 12(03): 199-205.
[14] 王超珺, 董志勇, 赵宛鄂, 胡嵩浩, 刘昭晖. 肌少症对肥胖患者袖状胃切除术后效果的影响研究[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(04): 283-287.
[15] 黄华, 梁志坚. 恶性肿瘤相关出血性卒中的研究进展[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(06): 611-615.
阅读次数
全文


摘要