| [1] |
Long DA, Mu W, Price KL, et al. Blood vessels and the aging kidney[J]. Nephron Exp Nephrol, 2005, 101(3):95-99.
|
| [2] |
Scholz H, Boivin FJ, Schmidt-Ott KM, et al. Kidney physiology and susceptibility to acute kidney injury: implications for renoprotection[J]. Nat Rev Nephrol, 2021, 17(5):335-349.
|
| [3] |
Roseman DA, Hwang SJ, Oyama-Manabe N, et al. Clinical associations of total kidney volume: the Framingham Heart Study[J]. Nephrol Dial Transplant, 2017, 32(8):1344-1350.
|
| [4] |
Wang X, Vrtiska TJ, Avula RT, et al. Age, kidney function, and risk factors associate differently with cortical and medullary volumes of the kidney[J]. Kidney Int, 2014, 85(3):677-685.
|
| [5] |
Hodgin JB, Bitzer M, Wickman L, et al. Glomerular aging and focal global glomerulosclerosis: a podometric perspective[J]. J Am Soc Nephrol, 2015, 26(12):3162-3178.
|
| [6] |
Verzola D, Gandolfo MT, Gaetani G, et al. Accelerated senescence in the kidneys of patients with type 2 diabetic nephropathy[J]. Am J Physiol Renal Physiol, 2008, 295(5):1563-1573.
|
| [7] |
Wiggins JE. Aging in the glomerulus[J]. J Gerontol A Biol Sci Med Sci, 2012, 67(12):1358-1364.
|
| [8] |
Melk A, Schmidt BM, Takeuchi O, et al. Expression of p16INK4a and other cell cycle regulator and senescence associated genes in aging human kidney[J]. Kidney Int, 2004, 65(2):510-520.
|
| [9] |
Jin H, Zhang Y, Ding Q, et al. Epithelial innate immunity mediates tubular cell senescence after kidney injury[J]. JCI insight, 2019, 4(2):e125490.
|
| [10] |
Li Z, Wang Z. Aging kidney and aging-related disease[J]. Adv Exp Med Biol, 2018, 1086:169-187.
|
| [11] |
Luo C, Zhou S, Zhou Z, et al. Wnt9a promotes renal fibrosis by accelerating cellular senescence in tubular epithelial cells[J]. J Am Soc Nephrol, 2018, 29(4):1238-1256.
|
| [12] |
Dumas SJ, Meta E, Borri M, et al. Phenotypic diversity and metabolic specialization of renal endothelial cells[J]. Nat Rev Nephrol, 2021, 17(7):441-464.
|
| [13] |
Schmitt R, Melk A. Molecular mechanisms of renal aging[J]. Kidney international, 2017, 92(3):569-579.
|
| [14] |
Chou YH, Chen YM. Aging and renal disease: old questions for new challenges[J]. Aging Dis, 2021, 12(2):515-528.
|
| [15] |
Chen J, Sivan U, Tan SL, et al. High-resolution 3D imaging uncovers organ-specific vascular control of tissue aging[J]. Sci Adv, 2021, 7(6):eabd7819.
|
| [16] |
Wada Y, Umeno R, Nagasu H, et al. Endothelial dysfunction accelerates impairment of mitochondrial function in ageing kidneys via inflammasome activation[J]. Int J Molecul Sci, 2021, 22(17):9269.
|
| [17] |
Jourde-Chiche N, Fakhouri F, Dou L, et al. Endothelium structure and function in kidney health and disease[J]. Nat Rev Nephrol, 2019, 15(2):87-108.
|
| [18] |
Westhoff JH, Hilgers KF, Steinbach MP, et al. Hypertension induces somatic cellular senescence in rats and humans by induction of cell cycle inhibitor p16INK4a[J]. Hypertension, 2008, 52(1):123-129.
|
| [19] |
Bax L, van der Graaf Y, Rabelink AJ, et al. Influence of atherosclerosis on age-related changes in renal size and function[J]. Eur J Clin Inves, 2003, 33(1):34-40.
|
| [20] |
Lacolley P, Regnault V, Avolio AP. Smooth muscle cell and arterial aging: basic and clinical aspects[J]. Cardiovascul Res, 2018, 114(4):513-528.
|
| [21] |
Mas-Bargues C, Borrás C, Alique M. The contribution of extracellular vesicles from senescent endothelial and vascular smooth muscle cells to vascular calcification[J]. Front Cardiovascul Med, 2022, 9:854726.
|
| [22] |
Chappell J, Harman JL, Narasimhan VM, et al. Extensive proliferation of a subset of differentiated, yet plastic, medial vascular smooth muscle cells contributes to neointimal formation in mouse injury and atherosclerosis models[J]. Circul Research, 2016, 119(12):1313-1323.
|
| [23] |
Ho CY, Shanahan CM. Medial arterial calcification: an overlooked player in peripheral arterial disease[J]. Arterioscler Thromb Vasc Biol, 2016, 36(8):1475-1482.
|
| [24] |
Hutcheson JD, Goettsch C. Cardiovascular calcification heterogeneity in chronic kidney disease[J]. Circul Res, 2023, 132(8):993-1012.
|
| [25] |
Satoh M, Kidokoro K, Ozeki M, et al. Angiostatin production increases in response to decreased nitric oxide in aging rat kidney[J]. Lab Invest, 2013, 93(3):334-343.
|
| [26] |
Stefanska A, Eng D, Kaverina N, et al. Interstitial pericytes decrease in aged mouse kidneys[J]. Aging, 2015, 7(6):370-382.
|
| [27] |
Jacobs ME, de Vries DK, Engelse MA, et al. Endothelial to mesenchymal transition in kidney fibrosis[J]. Nephrol Dial Transplant, 2024, 39(5):752-760.
|
| [28] |
Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains[J]. Exp Cell Res, 1961, 25:585-621.
|
| [29] |
Sturmlechner I, Durik M, Sieben CJ, et al. Cellular senescence in renal ageing and disease[J]. Nat Rev Nephrol, 2017, 13(2):77-89.
|
| [30] |
Akbar AN, Henson SM, Lanna A. Senescence of T lymphocytes: implications for enhancing human immunity[J]. Trend Immunol, 2016, 37(12):866-876.
|
| [31] |
Gorgoulis V, Adams PD, Alimonti A, et al. Cellular senescence: defining a path forward[J]. Cell, 2019, 179(4):813-827.
|
| [32] |
van Deursen JM. The role of senescent cells in ageing[J]. Nature, 2014, 509(7501):439-446.
|
| [33] |
von Zglinicki T. Oxidative stress shortens telomeres[J]. Trend Bio Sci, 2002, 27(7):339-344.
|
| [34] |
Sedelnikova OA, Horikawa I, Zimonjic DB, et al. Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks[J]. Nat Cell Biol, 2004, 6(2):168-170.
|
| [35] |
Wiley CD, Velarde MC, Lecot P, et al. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype[J]. Cell Metabol, 2016, 23(2):303-314.
|
| [36] |
Petrova NV, Velichko AK, Razin SV, et al. Small molecule compounds that induce cellular senescence[J]. Aging Cell, 2016, 15(6):999-1017.
|
| [37] |
Nehme J, Borghesan M, Mackedenski S, et al. Cellular senescence as a potential mediator of COVID-19 severity in the elderly[J]. Aging Cell, 2020, 19(10):e13237.
|
| [38] |
Lee S, Yu Y, Trimpert J, et al. Virus-induced senescence is a driver and therapeutic target in COVID-19[J]. Nature, 2021, 599(7884):283-289.
|
| [39] |
Wen J, Zeng M, Shu Y, et al. Aging increases the susceptibility of cisplatin-induced nephrotoxicity[J]. Age, 2015, 37(6):112.
|
| [40] |
Wolstein JM, Lee DH, Michaud J, et al. INK4a knockout mice exhibit increased fibrosis under normal conditions and in response to unilateral ureteral obstruction[J]. Am J Physiol Renal Physiol, 2010, 299(6):F1486-1495.
|
| [41] |
Jun JI, Lau LF. The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing[J]. Nat Cell Biol, 2010, 12(7):676-685.
|
| [42] |
Baker DJ, Childs BG, Durik M, et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan[J]. Nature, 2016, 530(7589):184-189.
|
| [43] |
Schmitt R, Susnik N, Melk A. Molecular aspects of renal senescence[J]. Curr Opin Organ Transplant, 2015, 20(4):412-416.
|
| [44] |
von Zglinicki T, Wan T, Miwa S. Senescence in post-mitotic cells: a driver of aging[J]? Antioxid Redox Signal, 2021, 34(4):308-323.
|
| [45] |
López-Otín C, Blasco MA, Partridge L, et al. The hallmarks of aging[J]. Cell, 2013, 153(6):1194-1217.
|
| [46] |
Kurz DJ, Decary S, Hong Y, et al. Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells[J]. J Cell Sci, 2000, 113 (Pt 20):3613-3622.
|
| [47] |
Mosteiro L, Pantoja C, de Martino A, et al. Senescence promotes in vivo reprogramming through p16(INK)(4a) and IL-6[J]. Aging cell, 2018, 17(2):e12711.
|
| [48] |
Prata L, Ovsyannikova IG, Tchkonia T, et al. Senescent cell clearance by the immune system: emerging therapeutic opportunities[J]. Semin Immunol, 2018, 40:101275.
|
| [49] |
Ritschka B, Storer M, Mas A, et al. The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration[J]. Genes Devel, 2017, 31(2):172-183.
|
| [50] |
Sharpless NE, Sherr CJ. Forging a signature of in vivo senescence[J]. Nat Rev Cancer, 2015, 15(7):397-408.
|
| [51] |
Wiley CD, Flynn JM, Morrissey C, et al. Analysis of individual cells identifies cell-to-cell variability following induction of cellular senescence[J]. Aging Cell, 2017, 16(5):1043-1050.
|
| [52] |
Sanders YY, Liu H, Zhang X, et al. Histone modifications in senescence-associated resistance to apoptosis by oxidative stress[J]. Redox Biol, 2013, 1(1):8-16.
|
| [53] |
Rayess H, Wang MB, Srivatsan ES. Cellular senescence and tumor suppressor gene p16[J]. Int J Cancer, 2012, 130(8):1715-1725.
|
| [54] |
Sopjani M, Rinnerthaler M, Kruja J, et al. Intracellular signaling of the aging suppressor protein Klotho[J]. Curr Mole Med, 2015, 15(1):27-37.
|
| [55] |
Chuang PY, Cai W, Li X, et al. Reduction in podocyte SIRT1 accelerates kidney injury in aging mice[J]. Am J Physiol Renal Physiol, 2017, 313(3):F621-F628.
|
| [56] |
Fang Y, Chen B, Liu Z, et al. Age-related GSK3β overexpression drives podocyte senescence and glomerular aging[J]. J Clin Invest, 2022, 132(4):e141848.
|
| [57] |
Zarse K, Terao T, Tian J, et al. Low-dose lithium uptake promotes longevity in humans and metazoans[J]. Eur J Nut, 2011, 50(5):387-389.
|
| [58] |
Zhou S, Wang P, Qiao Y, et al. Genetic and pharmacologic targeting of glycogen synthase kinase 3β reinforces the Nrf2 antioxidant defense against podocytopathy[J]. J Am Soc Nephrol, 2016, 27(8):2289-2308.
|
| [59] |
Kotas ME, Medzhitov R. Homeostasis, inflammation, and disease susceptibility[J]. Cell, 2015, 160(5):816-827.
|
| [60] |
O'Sullivan ED, Hughes J, Ferenbach DA. Renal aging: causes and consequences[J]. J Am Soc Nephrol, 2017, 28(2):407-420.
|
| [61] |
Saran R, Robinson B, Abbott KC, et al. US renal data system 2017 annual data report: epidemiology of kidney disease in the United States[J]. Am J Kidney Dis, 2018, 71(4):501.
|
| [62] |
Hsu RK, McCulloch CE, Dudley RA, et al. Temporal changes in incidence of dialysis-requiring AKI[J]. J Am Soc Nephrol, 2013, 24(1):37-42.
|
| [63] |
Minutolo R, Borrelli S, De Nicola L. CKD in the elderly: kidney senescence or blood pressure-related nephropathy?[J]. Am J Kidney Dis, 2015, 66(2):184-186.
|
| [64] |
Zhang L, Wang F, Wang L, et al. Prevalence of chronic kidney disease in China: a cross-sectional survey[J]. Lancet, 2012, 379(9818):815-822.
|
| [65] |
Tonelli M, Riella MC. World Kidney Day 2014: CKD and the aging population[J]. Am J Kidney Dis, 2014, 63(3):349-353.
|
| [66] |
Kitada K, Nakano D, Ohsaki H, et al. Hyperglycemia causes cellular senescence via a SGLT2- and p21-dependent pathway in proximal tubules in the early stage of diabetic nephropathy[J]. J Diabet Complicat, 2014, 28(5):604-611.
|
| [67] |
Silva FG. The aging kidney: a review--partⅡ[J]. Int Urol Nephrol, 2005, 37(2):419-432.
|
| [68] |
Liu J, Yang JR, He YN, et al. Accelerated senescence of renal tubular epithelial cells is associated with disease progression of patients with immunoglobulin A (IgA) nephropathy[J]. Transl Res, 2012, 159(6):454-463.
|
| [69] |
de Keizer PL. The fountain of youth by targeting senescent cells?[J]. Trend Molecul Med, 2017, 23(1):6-17.
|
| [70] |
Baar MP, Brandt RMC, Putavet DA, et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging[J]. Cell, 2017, 169(1):132-147.
|
| [71] |
Moskalev A, Guvatova Z, Lopes IA, et al. Targeting aging mechanisms: pharmacological perspectives[J]. Trend Endocrinol Metabol, 2022, 33(4):266-280.
|
| [72] |
Madeo F, Tavernarakis N, Kroemer G. Can autophagy promote longevity?[J]. Nat Cell Biol, 2010, 12(9):842-846.
|
| [73] |
Hofer SJ, Daskalaki I, Bergmann M, et al. Spermidine is essential for fasting-mediated autophagy and longevity[J]. Nat Cell Biol, 2024, 26(9):1571-1584.
|
| [74] |
de Magalhães JP. Ageing as a software design flaw[J]. Genom biol, 2023, 24(1):51.
|
| [75] |
Michaloglou C, Vredeveld LC, Soengas MS, et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi[J]. Nature, 2005, 436(7051):720-724.
|
| [76] |
Xu M, Pirtskhalava T, Farr JN, et al. Senolytics improve physical function and increase lifespan in old age[J]. Nat Med, 2018, 24(8):1246-1256.
|
| [77] |
Zhu Y, Tchkonia T, Pirtskhalava T, et al. The Achilles' heel of senescent cells: from transcriptome to senolytic drugs[J]. Aging Cell, 2015, 14(4):644-658.
|
| [78] |
Farr JN, Xu M, Weivoda MM, et al. Targeting cellular senescence prevents age-related bone loss in mice[J]. Nat Med, 2017, 23(9):1072-1079.
|
| [79] |
Ogrodnik M, Miwa S, Tchkonia T, et al. Cellular senescence drives age-dependent hepatic steatosis[J]. Nat Communicat, 2017, 8:15691.
|
| [80] |
Palmer AK, Xu M, Zhu Y, et al. Targeting senescent cells alleviates obesity-induced metabolic dysfunction[J]. Aging Cell, 2019, 18(3):e12950.
|
| [81] |
Zhang P, Kishimoto Y, Grammatikakis I, et al. Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer's disease model[J]. Nat Neurosci, 2019, 22(5):719-728.
|
| [82] |
Schafer MJ, White TA, Iijima K, et al. Cellular senescence mediates fibrotic pulmonary disease[J]. Nat Communicat, 2017, 8:14532.
|
| [83] |
Kim SR, Puranik AS, Jiang K, et al. Progressive cellular senescence mediates renal dysfunction in ischemic nephropathy[J]. J Am Soc Nephrol, 2021, 32(8):1987-2004.
|