切换至 "中华医学电子期刊资源库"

中华老年病研究电子杂志 ›› 2022, Vol. 09 ›› Issue (04) : 58 -64. doi: 10.3877/cma.j.issn.2095-8757.2022.04.011

综述

褪黑素调控椎间盘退变的研究进展
吕斌1, 胡良聪1, 谢旭东1, 程鹏1, 米博斌1, 刘国辉1,()   
  1. 1. 430022 武汉,华中科技大学同济医学院附属协和医院骨科
  • 收稿日期:2022-05-11 出版日期:2022-11-28
  • 通信作者: 刘国辉

Advances in mechanism of intervertebral disc degeneration: The regulating role of melatonin

Bin Lyu1, Liangcong Hu1, Xudong Xie1, Bobin Mi1, Jishan Yuan1, Guohui Liu1,()   

  1. 1. Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
  • Received:2022-05-11 Published:2022-11-28
  • Corresponding author: Guohui Liu
引用本文:

吕斌, 胡良聪, 谢旭东, 程鹏, 米博斌, 刘国辉. 褪黑素调控椎间盘退变的研究进展[J]. 中华老年病研究电子杂志, 2022, 09(04): 58-64.

Bin Lyu, Liangcong Hu, Xudong Xie, Bobin Mi, Jishan Yuan, Guohui Liu. Advances in mechanism of intervertebral disc degeneration: The regulating role of melatonin[J]. Chinese Journal of Geriatrics Research(Electronic Edition), 2022, 09(04): 58-64.

褪黑素及其代谢物具有多种生理功能。在病理生理环境下,褪黑素不仅拮抗炎症和氧化应激,而且调节细胞自噬和凋亡。本文从炎症反应、自噬、氧化应激、细胞基质合成分解、椎间盘细胞衰老等方面综述了褪黑素在椎间盘退变中的作用及机制,以期为治疗椎间盘退行性疾病提供思路。

Melatonin and its metabolites have many physiological functions. In the pathophysiological environment, melatonin not only antagonizes inflammation and oxidative stress, but also regulates autophagy and apoptosis. This paper reviews the role and mechanism of melatonin in intervertebral disc aging and degeneration from aspects of inflammation, autophagy, oxidative stress, extracellular matrix metabolism and senescence of intervertebral disc cells, in order to provide ideas for the treatment of intervertebral disc degeneration diseases.

[1]
Vo NV, Hartman RA, Patil PR, et al. Molecular mechanisms of biological aging in intervertebral discs[J]. J Orthop Res, 2016, 34(8):1289-1306.
[2]
Gong CY, Zhang HH. Autophagy as a potential therapeutic target in intervertebral disc degeneration[J]. Life Sci, 2021, 273:119266.
[3]
Yan C, Wang X, Xiang C, et al. Applications of functionalized hydrogels in the regeneration of the intervertebral disc[J]. Biomed Res Int, 2021, 2021:2818624.
[4]
Näther P, Kersten JF, Kaden I, et al. Distribution patterns of degeneration of the lumbar spine in a cohort of 200 patients with an indication for lumbar MRI[J]. Int J Environ Res Public Health, 2022, 19(6):3721.
[5]
Risbud MV, Shapiro IM. Role of cytokines in intervertebral disc degeneration: Pain and disc content[J]. Nat Rev Rheumatol, 2014, 10(1):44-56.
[6]
Clarke LE, Richardson SM, Hoyland JA. Harnessing the potential of mesenchymal stem cells for IVD regeneration[J]. Curr Stem Cell Res Ther, 2015, 10(4):296-306.
[7]
Galano A, Tan DX, Reiter RJ. On the free radical scavenging activities of melatonin's metabolites, AFMK and AMK[J]. J Pineal Res, 2013, 54(3): 245-57.
[8]
Khan ZA, Hong PJ, Lee CH, et al. Recent advances in electrochemical and optical sensors for detecting tryptophan and melatonin[J]. Int J Nanomedicine, 2021, 16:6861-6888.
[9]
Podichetty VK. The aging spine: The role of inflammatory mediators in intervertebral disc degeneration[J]. Cell Mol Biol (Noisy-le-grand), 2007, 53(5):4-18.
[10]
Cheng Z, Xiang Q, Wang J, et al. The potential role of melatonin in retarding intervertebral disc ageing and degeneration: A systematic review[J]. Ageing Res Rev, 2021, 70:101394.
[11]
Studer RK, Gilbertson LG, Georgescu H, et al. p38 MAPK inhibition modulates rabbit nucleus pulposus cell response to IL-1[J]. J Orthop Res, 2008, 26(7):991-998.
[12]
Fang F, Jiang D. IL-1β/HMGB1 signalling promotes the inflammatory cytokines release via TLR signalling in human intervertebral disc cells[J]. Biosci Rep, 2016, 36(5):e00379.
[13]
Le Maitre CL, Hoyland JA, Freemont AJ. Catabolic cytokine expression in degenerate and herniated human intervertebral discs: IL-1beta and TNFalpha expression profile[J]. Arthritis Res Ther, 2007, 9(4):R77.
[14]
Zhang G, Liao Y, Yang H, et al. IIrigenin reduces the expression of caspase-3 and matrix metalloproteinases, thus suppressing apoptosis and extracellular matrix degradation in TNF-α-stimulated nucleus pulposus cells[J]. Chem Biol Interact, 2021, 349:109681.
[15]
Wang C, Yu X, Yan Y, et al. Tumor necrosis factor-alpha: A key contributor to intervertebral disc degeneration[J]. Acta Biochim Biophys Sin (Shanghai), 2017. 49(1):1-13.
[16]
Zhang GZ, Liu MQ, Chen HW, et al. NF-κB signalling pathways in nucleus pulposus cell function and intervertebral disc degeneration[J]. Cell Prolif, 2021, 54(7):e13057.
[17]
Gabr MA, Jing L, Helbling AR, et al. Interleukin-17 synergizes with IFNgamma or TNFalpha to promote inflammatory mediator release and intercellular adhesion molecule-1 (ICAM-1) expression in human intervertebral disc cells[J]. J Orthop Res, 2011, 29(1):1-7.
[18]
Risbud MV, Shapiro IM. Role of cytokines in intervertebral disc degeneration: Pain and disc content[J]. Nat Rev Rheumatol, 2014, 10(1):44-56.
[19]
Hardeland R. Aging, Melatonin, and the pro- and anti-inflammatory networks[J]. Int J Mol Sci, 2019, 20(5):1223.
[20]
Tian Y, Ji Y, Mei X, et al. Lower plasma melatonin in the intervertebral disk degeneration patients was associated with increased proinflammatory cytokines[J]. Clin Interv Aging, 2021, 16:215-224.
[21]
Chen F, Jiang G, Liu H, et al. Melatonin alleviates intervertebral disc degeneration by disrupting the IL-1β/NF-κB-NLRP3 inflammasome positive feedback loop[J]. Bone Res, 2020, 8:10.
[22]
Chen F, Jiang G, Liu H, et al. Melatonin alleviates intervertebral disc degeneration by disrupting the IL-1β/NF-B-NLRP3 inflammasome positive feedback loop[J]. Bone Res, 2020, 8:10.
[23]
Chao-Yang G, Peng C, Hai-Hong Z. Roles of NLRP3 inflammasome in intervertebral disc degeneration[J]. Osteoarthritis Cartilage, 2021, 29(6):793-801.
[24]
Huang Y, Peng Y, Sun J, et al. Nicotinamide phosphoribosyl transferase controls NLRP3 inflammasome activity through MAPK and NF-kappaB signaling in nucleus pulposus cells, as suppressed by melatownin[J]. Inflammation, 2020, 43(3):796-809.
[25]
Wei B, Zhao Y, Li W, et al. Innovative immune mechanisms and antioxidative therapies of intervertebral disc degeneration[J]. Front Bioeng Biotechnol, 2022, 10:1023877.
[26]
Ye W, Xu K, Huang D, et al. Age-related increases of macroautophagy and chaperone-mediated autophagy in rat nucleus pulposus[J]. Connect Tissue Res, 2011, 52(6):472-478.
[27]
Xu K, Chen W, Wang X, et al. Autophagy attenuates the catabolic effect during inflammatory conditions in nucleus pulposus cells, as sustained by NF-kappaB and JNK inhibition[J]. Int J Mol Med, 2015, 36(3):661-668.
[28]
Park EY, Park JB. High glucose-induced oxidative stress promotes autophagy through mitochondrial damage in rat notochordal cells[J]. Int Orthop, 2013, 37(12):2507-2514.
[29]
Fernández A, Ordóñez R, Reiter RJ, et al. Melatonin and endoplasmic reticulum stress: Relation to autophagy and apoptosis[J]. J Pineal Res, 2015, 59(3):292-307.
[30]
Mehrzadi S, Pourhanifeh MH, Mirzaei A, et al. An updated review of mechanistic potentials of melatonin against cancer: Pivotal roles in angiogenesis, apoptosis, autophagy, endoplasmic reticulum stress and oxidative stress[J]. Cancer Cell Int, 2021, 21(1):188.
[31]
Li J, Wang C, Xue L, et al. Melatonin suppresses apoptosis of nucleus pulposus cells through inhibiting autophagy via the PI3K/Akt pathway in a high-glucose culture[J]. Biomed Res Int, 2021, 2021:4604258.
[32]
Chen F, Liu H, Wang X, et al. Melatonin activates autophagy via the NF-kappaB signaling pathway to prevent extracellular matrix degeneration in intervertebral disc[J]. Osteoarthritis Cartilage, 2020, 28(8):1121-1132.
[33]
Guo J, Shao M, Lu F, et al. Role of Sirt1 plays in nucleus pulposus cells and intervertebral disc degeneration[J]. Spine (Phila Pa 1976), 2017, 42(13):E757-E766.
[34]
Zhang Z, Lin J, Tian N, et al. Melatonin protects vertebral endplate chondrocytes against apoptosis and calcification via the Sirt1-autophagy pathway[J]. J Cell Mol Med, 2019, 23(1):177-193.
[35]
Feng C, Yang M, Lan M, et al. ROS: Crucial intermediators in the pathogenesis of intervertebral disc degeneration[J]. Oxid Med Cell Longev, 2017, 2017:5601593.
[36]
He R, Cui M, Lin H, et al. Melatonin resists oxidative stress-induced apoptosis in nucleus pulposus cells[J]. Life Sci, 2018, 199:122-130.
[37]
Ponnappan S, Ponnappan U. Aging and immune function: Molecular mechanisms to interventions[J]. Antioxid Redox Signal, 2011, 14(8):1551-1585.
[38]
Dimozi A, Mavrogonatou E, Sklirou A, et al. Oxidative stress inhibits the proliferation, induces premature senescence and promotes a catabolic phenotype in human nucleus pulposus intervertebral disc cells[J]. Eur Cell Mater, 2015, 30:89-102.
[39]
Sun K, Sun X, Sun J, et al. Tissue renin-angiotensin system (tRAS) induce intervertebral disc degeneration by activating oxidative stress and inflammatory reaction[J]. Oxid Med Cell Longev, 2021, 2021:3225439.
[40]
Tan DX, Hardeland R, Manchester LC, et al. The changing biological roles of melatonin during evolution: From an antioxidant to signals of darkness, sexual selection and fitness[J]. Biol Rev Camb Philos Soc, 2010, 85(3):607-623.
[41]
Reiter RJ, Tan DX, Terron MP, et al. Melatonin and its metabolites: New findings regarding their production and their radical scavenging actions[J]. Acta Biochim Pol, 2007, 54(1):1-9.
[42]
Reiter RJ, Tan DX, Rosales-Corral S, et al. Mitochondria: Central organelles for melatonin’s antioxidant and anti-aging actions[J]. Molecules, 2018, 23(2):509.
[43]
Huang Y, Peng Y, Sun J, et al. Nicotinamide phosphoribosyl transferase controls NLRP3 inflammasome activity through MAPK and NF-κB signaling in nucleus pulposus cells, as suppressed by melatonin[J]. Inflammation, 2020, 43(3):796-809.
[44]
Chen Y, Wu Y, Shi H, et al. Melatonin ameliorates intervertebral disc degeneration via the potential mechanisms of mitophagy induction and apoptosis inhibition[J]. J Cell Mol Med, 2019, 23(3): 2136-2148.
[45]
Krut Z, Pelled G, Gazit D, et al. Stem cells and exosomes: New therapies for intervertebral disc degeneration[J]. Cells, 2021, 10(9):2241.
[46]
Le Maitre CL, Pockert A, Buttle DJ, et al. Matrix synthesis and degradation in human intervertebral disc degeneration[J]. Biochem Soc Trans, 2007, 35(Pt 4):652-655.
[47]
Wagner DR, Reiser KM, Lotz JC. Glycation increases human annulus fibrosus stiffness in both experimental measurements and theoretical predictions[J]. J Biomech, 2006, 39(6):1021-1029.
[48]
Vo NV, Hartman RA, Yurube T, et al. Expression and regulation of metalloproteinases and their inhibitors in intervertebral disc aging and degeneration[J]. Spine J, 2013, 13(3):331-341.
[49]
Kobayashi Y, Sakai D, Iwashina T, et al. Low-intensity pulsed ultrasound stimulates cell proliferation, proteoglycan synthesis and expression of growth factor-related genes in human nucleus pulposus cell line[J]. Eur Cell Mater, 2009, 17:15-22.
[50]
Li Z, Li X, Chen C, et al. Melatonin inhibits nucleus pulposus (NP) cell proliferation and extracellular matrix (ECM) remodeling via the melatonin membrane receptors mediated PI3K-Akt pathway[J]. J Pineal Res, 2017, 63(3). doi: 10.1111/jpi.12435.
[51]
Shen C, Li Y, Chen Y, et al. Melatonin prevents the binding of vascular endothelial growth factor to its receptor and promotes the expression of extracellular matrix-associated genes in nucleus pulposus cells[J]. Exp Ther Med, 2020, 20(5):106.
[52]
Wang F, Cai F, Shi R, et al. Aging and age related stresses: A senescence mechanism of intervertebral disc degeneration[J]. Osteoarthritis Cartilage, 2016, 24(3):398-408.
[53]
Martins DE, Medeiros VP, Wajchenberg M, et al. Changes in human intervertebral disc biochemical composition and bony end plates between middle and old age[J/OL]. PLoS One, 2018, 13(9):e0203932.
[54]
Pratsinis H, Constantinou V, Pavlakis K, et al. Exogenous and autocrine growth factors stimulate human intervertebral disc cell proliferation via the ERK and Akt pathways[J]. J Orthop Res, 2012, 30(6):958-964.
[55]
Guo S, Cui L, Xiao C, et al. The mechanisms and functions of GDF-5 in intervertebral disc degeneration[J]. Orthop Surg, 2021, 13(3):734-741.
[56]
Mariotti V, Fiorotto R, Cadamuro M, et al. New insights on the role of vascular endothelial growth factor in biliary pathophysiology[J]. JHEP Rep, 2021, 3(3):100251.
[57]
Zhang TW, Li ZF, Ding W, et al. Decorin inhibits nucleus pulposus apoptosis by matrix-induced autophagy via the mTOR pathway[J]. J Orthop Res, 2021, 39(8):1777-1788.
[58]
Alpantaki K, Kampouroglou A, Koutserimpas C, et al. Diabetes mellitus as a risk factor for intervertebral disc degeneration: A critical review[J]. Eur Spine J, 2019, 28(9):2129-2144.
[59]
Novais EJ, Diekman BO, Shapiro IM, et al. p16Ink4a deletion in cells of the intervertebral disc affects their matrix homeostasis and senescence associated secretory phenotype without altering onset of senescence[J]. Matrix Biol, 2019, 82:54-70.
[60]
Che H, Li J, Li Y, et al. p16 deficiency attenuates intervertebral disc degeneration by adjusting oxidative stress and nucleus pulposus cell cycle[J]. Elife, 2020, 9:e52570.
[61]
Ngo K, Patil P, McGowan SJ, et al. Senescent intervertebral disc cells exhibit perturbed matrix homeostasis phenotype[J]. Mech Ageing Dev, 2017, 166:16-23.
[62]
廖军,谢巧瑜,张乐,等.电针对颈椎病模型大鼠椎间盘纤维环细胞Wnt-β-catenin信号通路的影响[J].中国针灸201434(12):1203-1207.
[63]
Ge J, Zhou Q, Niu J, et al. Melatonin protects intervertebral disc from degeneration by improving cell survival and function via activation of the ERK1/2 signaling pathway[J]. Oxid Med Cell Longev, 2019, 2019:5120275.
[64]
Zhang Y, He F, Chen Z, et al. Melatonin modulates IL-1β-induced extracellular matrix remodeling in human nucleus pulposus cells and attenuates rat intervertebral disc degeneration and inflammation[J]. Aging (Albany NY), 2019, 11(22):10499-10512.
[1] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[2] 韩圣瑾, 周正武, 翁云龙, 黄鑫. 碳酸氢钠林格液联合连续性肾脏替代疗法对创伤合并急性肾损伤患者炎症水平及肾功能的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 376-381.
[3] 韩李念, 王君. 放射性皮肤损伤治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 533-537.
[4] 周子慧, 李恭驰, 李炳辉, 王知, 刘慧真, 王卉, 邹利军. 细胞自噬在创面愈合中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 542-546.
[5] 陈大敏, 曹晓刚, 曹能琦. 肥胖对胃癌患者手术治疗效果的影响研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 651-653.
[6] 贾成朋, 王代宏, 陈华, 孙备. 可切除性胰腺癌预后术前预测模型的建立及应用[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 566-570.
[7] 伍学成, 李远伟, 袁武雄, 王建松, 石泳中, 卢强, 李卓, 陈佳, 刘哲, 滕伊漓, 高智勇. 炎症介质谱联合降钙素原在尿源性脓毒血症中的诊断价值[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 476-480.
[8] 王可, 范彬, 李多富, 刘奎. 两种疝囊残端处理方法在经腹腹膜前腹股沟疝修补术中的疗效比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 692-696.
[9] 刘骏, 朱霁, 殷骏. 右美托咪定对腹股沟疝手术麻醉效果及安全性的影响[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(05): 570-573.
[10] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[11] 王小红, 钱晶, 翁文俊, 周国雄, 朱顺星, 祁小鸣, 刘春, 王萍, 沈伟, 程睿智, 秦璟灏. 巯基丙酮酸硫基转移酶调控核因子κB信号介导自噬对重症急性胰腺炎大鼠的影响及机制[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 422-426.
[12] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[13] 张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.
[14] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
[15] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
阅读次数
全文


摘要