切换至 "中华医学电子期刊资源库"

中华老年病研究电子杂志 ›› 2022, Vol. 09 ›› Issue (02) : 9 -12. doi: 10.3877/cma.j.issn.2095-8757.2022.02.002

肌少症

老年人肠道菌群与肌少症
胡奕卿1, 刘焕兵1,()   
  1. 1. 330006 南昌,南昌大学第一附属医院全科医疗科
  • 收稿日期:2022-01-05 出版日期:2022-05-28
  • 通信作者: 刘焕兵

Intestinal flora and sarcopenia in the elderly

Yiqing Hu1, Huanbing Liu1,()   

  1. 1. Department of General Medicine, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
  • Received:2022-01-05 Published:2022-05-28
  • Corresponding author: Huanbing Liu
引用本文:

胡奕卿, 刘焕兵. 老年人肠道菌群与肌少症[J]. 中华老年病研究电子杂志, 2022, 09(02): 9-12.

Yiqing Hu, Huanbing Liu. Intestinal flora and sarcopenia in the elderly[J]. Chinese Journal of Geriatrics Research(Electronic Edition), 2022, 09(02): 9-12.

随着人体衰老,肠道菌群的结构和多样性发生不同程度的失衡,某些细菌的成分、代谢产物及其介导的信号通路可能参与了年龄相关的肌少症的发生、发展。本文重点从老年人肠道菌群的特点,肠道菌群对骨骼肌质量、成分和功能的影响,以及潜在的作用机制进行综述,旨在为基于肠道菌群早期干预改善肌肉质量和功能提供理论参考。

Imbalance of the structure and diversity of intestinal flora are common in elderly. The components, metabolites of some bacteria and their mediated signaling pathways may be involved in the occurrence and development of age-related sarcopenia. This paper reviews the characteristics of intestinal microbiota in the elderly, its effects on skeletal muscle mass, composition and function, and the research progress on the potential mechanisms, aiming to provide theoretical reference for early intervention based on intestinal microbiota to improve muscle mass and function.

[1]
Pedersen BK, Febbraio MA. Muscle as an endocrine organ: Focus on muscle-derived interleukin-6[J]. Physiol Rev, 2008, 88(4):1379-1406.
[2]
Cruz-Jentoft AJ, Glistan B, Jrgen B, et al. Sarcopenia: Revised European consensus on definition and diagnosis[J]. Age Ageing, 2019, 48(4):601.
[3]
Hawley JA. Microbiota and muscle highway-two way traffic[J]. Nat Rev Endocrinol, 2020, 16(2):71-72.
[4]
Qin JJ,Li RQ,Raes J,et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464(7285):59-65.
[5]
Yatsunenko T,Rey FE,Manary MJ,et al. Human gut microbiome viewed across age and geography[J]. Nature, 2012, 486(7402):222-227.
[6]
Wilmanski T, Diener C, Rappaport N, et al. Gut microbiome pattern reflects healthy ageing and predicts survival in humans[J]. Nat Metab, 2021, 3(2):274-286.
[7]
O'Toole PW, Jeffery IB. Gut microbiota and aging[J]. Science, 2015, 350(6265):1214-1215.
[8]
Leite G, Pimentel M, Barlow GM, et al. Age and the aging process significantly alter the small bowel microbiome[J]. Cell Rep, 2021, 36(13):109765.
[9]
Lustgarten MS. Classifying aging as a disease: The role of microbes[J]. Front Genet, 2016, 7:212.
[10]
Sato Y, Atarashi K, Plichta DR, et al. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians[J]. Nature, 2021, 599(7885):458-464.
[11]
Siddharth J, Chakrabarti A, Pannérec A, et al. Aging and sarcopenia associate with specific interactions between gut microbes, serum biomarkers and host physiology in rats[J]. Aging (Albany NY), 2017, 9(7):1698-1720.
[12]
Perry RJ, Peng L, Barry NA, et al. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome[J]. Nature, 2016(7606), 534:213-217.
[13]
Walsh ME, Bhattacharya A, Sataranatarajan K, et al. The histone deacetylase inhibitor butyrate improves metabolism and reduces muscle atrophy during aging[J]. Aging Cell, 2015, 14(6):957-970.
[14]
Houghton MJ, Kerimi A, Mouly V, et al. Gut microbiome catabolites as novel modulators of muscle cell glucose metabolism[J]. FASEB J, 2019, 33(2):1887-1898.
[15]
Ticinesi A, Tana C, Nouenne A. The intestinal microbiome and its relevance for functionality in older persons[J]. Curr Opin Clin Nutr Metab Care, 2019, 22(1):4-12.
[16]
Reid KF, Fielding RA. Skeletal muscle power: A critical determinant of physical functioning in older adults[J]. Exerc Sport Sci Rev, 2012, 40(1):4-12.
[17]
Bäckhed F, Manchester JK, Semenkovich CF, et al. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice[J]. Proc Natl Acad Sci U S A, 2007, 104(3):979-984.
[18]
Yan HL, Diao H, Xiao Y, et al. Gut microbiota can transfer fiber characteristics and lipid metabolic profiles of skeletal muscle from pigs to germ-free mice[J]. Sci Rep, 2016, 6:31786.
[19]
Goodpaster BH, Carlson CL, Visser M, et al. Attenuation of skeletal muscle and strength in the elderly: The health ABC study[J]. J Appl Physiol (1985), 2001, 90(6):2157-2165.
[20]
Agrawal K, Agarwal Y, Chopra RK, et al. Evaluation of MR spectroscopy and diffusion-weighted MRI in postmenopausal bone strength[J/OL]. Cureus, 2015, 7(9):e327.
[21]
van Tongeren SP, Slaets JP, Harmsen HJ, et al. Fecal microbiota composition and frailty[J]. Appl Environ Microbiol, 2005, 71(10):6438-6442.
[22]
Fielding RA, Reeves AR, Jasuja R, et al. Muscle strength is increased in mice that are colonized with microbiota from high-functioning older adults[J]. Exp Gerontol, 2019, 127:110722.
[23]
Chen YM, Wei L, Chiu YS, et al. Lactobacillus plantarum TWK10 supplementation improves exercise performance and increases muscle mass in mice[J]. Nutrients, 2016, 8(4):205.
[24]
Ticinesi A, Lauretani F, Milani C, et al. Aging gut microbiota at the cross-road between nutrition, physical frailty, and sarcopenia: is there a gut-muscle axis[J]? Nutrients, 2017, 9(12):1303.
[25]
Sovran B, Hugenholtz F, Elderman M, et al. Age-associated impairment of the mucus barrier function is associated with profound changes in microbiota and immunity[J]. Sci Rep, 2019, 9(1):1437.
[26]
Buford TW, Carter CS, Vanderpol WJ, et al. Composition and richness of the serum microbiome differ by age and link to systemic inflammation[J]. Geroscience, 2018, 40(3):257-268.
[27]
Ferrucci L,Fabbri E. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty[J]. Nat Rev Cardiol, 2018, 15(9):505-522.
[28]
Bano G, Trevisan C, Carraro S, et al. Inflammation and sarcopenia: A systematic review and meta-analysis[J]. Maturitas, 2017, 96:10-15.
[29]
Enoki Y, Watanabe H, Arake R, et al. Indoxyl sulfate potentiates skeletal muscle atrophy by inducing the oxidative stress-mediated expression of myostatin and atrogin-1[J]. Sci Rep, 2016, 6:32084.
[30]
Cox NJ, Bowyer R, Lochlainn MN, et al. The composition of the gut microbiome differs among community dwelling older people with good and poor appetite[J]. J Cachexia Sarcopenia Muscle, 2021, 12(2):368-377.
[31]
Allen JM, Mailing LJ, Niemiro GM, et al. Exercise alters gut microbiota composition and function in lean and obese humans[J]. Med Sci Sports Exerc, 2018, 50(4):747-757.
[32]
Barton W, Penney NC, Cronin O, et al. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level[J]. Gut, 2018, 67(4):625-633.
[33]
Fiuza-Luces C, Santos-Lozano A, Joyner M, et al. Exercise benefits in cardiovascular disease: Beyond attenuation of traditional risk factors[J]. Nat Rev Cardiol, 2018, 15(12):731-743.
[34]
Bian GR, Gloor GB, Gong AH, et al. The gut microbiota of healthy aged chinese is similar to that of the healthy young[J/OL]. mSphere, 2017, 2(5):e00327-17.
[35]
Bindels LB, Beck R, Schakman O, et al. Restoring specific lactobacilli levels decreases inflammation and muscle atrophy markers in an acute leukemia mouse model[J/OL]. PLoS One, 2012, 7(6):e37971.
[36]
Buigues C, Fernández-Garrido J, Pruimboom L, et al. Effect of a prebiotic formulation on frailty syndrome: A randomized, double-blind clinical trial[J]. Int J Mol Sci, 2016, 17(6):932.
[37]
Vandeputte D, Falony G, Vieira-Silva S, et al. Prebiotic inulin-type fructans induce specific changes in the human gut microbiota[J]. Gut, 2017, 66(11):1968-1974.
[38]
Mao B, Gu J, Li D, et al. Effects of different doses of fructooligosaccharides (FOS) on the composition of mice fecal microbiota, especially the bifidobacterium composition[J]. Nutrients, 2018, 10(8):1105.
[39]
Rizzoli R. Nutritional influence on bone: role of gut microbiota[J]. Aging Clin Exp Res, 2019, 31(6):743-751.
[40]
van Dronkelaar C, van Velzen A, Abdelrazek M, et al. Minerals and sarcopenia; The role of calcium, iron, magnesium, phosphorus, potassium, selenium, sodium, and zinc on muscle mass, muscle strength, and physical performance in older adults: A systematic review[J]. J Am Med Dir Assoc, 2018, 19(1):6-11.
[41]
Theou O, Jayanama K, Fernández-Garrido J, et al. Can a prebiotic formulation reduce frailty levels in older people?[J]. J Frailty Aging, 2019, 8(1):48-52.
[42]
Antushevich H. Fecal microbiota transplantation in disease therapy[J]. Clin Chim Acta, 2020, 503:90-98.
[43]
Hsu TH, Chiu CC, Wang YC, et al. Supplementation with beef extract improves exercise performance and reduces post-exercise fatigue independent of gut microbiota[J]. Nutrients, 2018, 10(11):1740.
[44]
Sung MM, Byrne NJ, Robertson IM, et al. Resveratrol improves exercise performance and skeletal muscle oxidative capacity in heart failure[J]. Am J Physiol Heart Circ Physiol, 2017, 312(4):H842-H853.
[1] 李凤仪, 李若凡, 高旭, 张超凡. 目标导向液体干预对老年胃肠道肿瘤患者术后血流动力学、胃肠功能恢复的影响[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 29-32.
[2] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[3] 刘跃刚, 薛振峰. 腹腔镜腹股沟疝日间手术在老年患者中的安全性分析[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 711-714.
[4] 代格格, 杨丽, 胡媛媛, 周文婷. 手术室综合干预在老年腹股沟疝患者中的应用效果[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 759-763.
[5] 赵宏霞, 刘静, 李晓薇, 陈金婵, 汪志霞. 腹腔镜下经阴道子宫全切术联合阴道前后壁修补术治疗老年子宫脱垂效果[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(05): 561-565.
[6] 孙伟, 林丽, 师高洋. 超声引导下连续髂腹股沟-髂腹下神经阻滞与腹横肌平面阻滞在老年腹股沟疝手术中应用效果比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(05): 593-597.
[7] 何吉鑫, 杨燕妮, 王继伟, 李建国, 谢铭. 肠道菌群及肠道代谢产物参与慢性便秘发生机制的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 495-499.
[8] 王宁, 刘彦哲, 吴紫莺, 曾超, 雷光华, 沙婷婷, 王伊伦. 基于孟德尔随机化研究探讨肠道菌群与肌少症表型的因果关联[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 333-342.
[9] 姜里蛟, 张峰, 周玉萍. 多学科诊疗模式救治老年急性非静脉曲张性上消化道大出血患者的临床观察[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 520-524.
[10] 单秋洁, 孙立柱, 徐宜全, 王之霞, 徐妍, 马浩, 刘田田. 中老年食管癌患者调强放射治疗期间放射性肺损伤风险模型构建及应用[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 388-393.
[11] 孙晗, 武侠. 成人肠易激综合征患者肠道菌群特征与不同分型患者生活质量和精神症状的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 461-465.
[12] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[13] 郭震天, 张宗明, 赵月, 刘立民, 张翀, 刘卓, 齐晖, 田坤. 机器学习算法预测老年急性胆囊炎术后住院时间探索[J]. 中华临床医师杂志(电子版), 2023, 17(9): 955-961.
[14] 张大涯, 陈世锔, 陈润祥, 张晓冬, 李达, 白飞虎. 肠道微生物群对代谢相关脂肪性肝病发展的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 828-833.
[15] 王家圆, 王晓东. 消化系统恶性肿瘤相关肌少症的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(07): 823-827.
阅读次数
全文


摘要