切换至 "中华医学电子期刊资源库"

中华老年病研究电子杂志 ›› 2022, Vol. 09 ›› Issue (02) : 9 -12. doi: 10.3877/cma.j.issn.2095-8757.2022.02.002

肌少症

老年人肠道菌群与肌少症
胡奕卿1, 刘焕兵1,()   
  1. 1. 330006 南昌,南昌大学第一附属医院全科医疗科
  • 收稿日期:2022-01-05 出版日期:2022-05-28
  • 通信作者: 刘焕兵

Intestinal flora and sarcopenia in the elderly

Yiqing Hu1, Huanbing Liu1,()   

  1. 1. Department of General Medicine, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
  • Received:2022-01-05 Published:2022-05-28
  • Corresponding author: Huanbing Liu
引用本文:

胡奕卿, 刘焕兵. 老年人肠道菌群与肌少症[J/OL]. 中华老年病研究电子杂志, 2022, 09(02): 9-12.

Yiqing Hu, Huanbing Liu. Intestinal flora and sarcopenia in the elderly[J/OL]. Chinese Journal of Geriatrics Research(Electronic Edition), 2022, 09(02): 9-12.

随着人体衰老,肠道菌群的结构和多样性发生不同程度的失衡,某些细菌的成分、代谢产物及其介导的信号通路可能参与了年龄相关的肌少症的发生、发展。本文重点从老年人肠道菌群的特点,肠道菌群对骨骼肌质量、成分和功能的影响,以及潜在的作用机制进行综述,旨在为基于肠道菌群早期干预改善肌肉质量和功能提供理论参考。

Imbalance of the structure and diversity of intestinal flora are common in elderly. The components, metabolites of some bacteria and their mediated signaling pathways may be involved in the occurrence and development of age-related sarcopenia. This paper reviews the characteristics of intestinal microbiota in the elderly, its effects on skeletal muscle mass, composition and function, and the research progress on the potential mechanisms, aiming to provide theoretical reference for early intervention based on intestinal microbiota to improve muscle mass and function.

[1]
Pedersen BK, Febbraio MA. Muscle as an endocrine organ: Focus on muscle-derived interleukin-6[J]. Physiol Rev, 2008, 88(4):1379-1406.
[2]
Cruz-Jentoft AJ, Glistan B, Jrgen B, et al. Sarcopenia: Revised European consensus on definition and diagnosis[J]. Age Ageing, 2019, 48(4):601.
[3]
Hawley JA. Microbiota and muscle highway-two way traffic[J]. Nat Rev Endocrinol, 2020, 16(2):71-72.
[4]
Qin JJ,Li RQ,Raes J,et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464(7285):59-65.
[5]
Yatsunenko T,Rey FE,Manary MJ,et al. Human gut microbiome viewed across age and geography[J]. Nature, 2012, 486(7402):222-227.
[6]
Wilmanski T, Diener C, Rappaport N, et al. Gut microbiome pattern reflects healthy ageing and predicts survival in humans[J]. Nat Metab, 2021, 3(2):274-286.
[7]
O'Toole PW, Jeffery IB. Gut microbiota and aging[J]. Science, 2015, 350(6265):1214-1215.
[8]
Leite G, Pimentel M, Barlow GM, et al. Age and the aging process significantly alter the small bowel microbiome[J]. Cell Rep, 2021, 36(13):109765.
[9]
Lustgarten MS. Classifying aging as a disease: The role of microbes[J]. Front Genet, 2016, 7:212.
[10]
Sato Y, Atarashi K, Plichta DR, et al. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians[J]. Nature, 2021, 599(7885):458-464.
[11]
Siddharth J, Chakrabarti A, Pannérec A, et al. Aging and sarcopenia associate with specific interactions between gut microbes, serum biomarkers and host physiology in rats[J]. Aging (Albany NY), 2017, 9(7):1698-1720.
[12]
Perry RJ, Peng L, Barry NA, et al. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome[J]. Nature, 2016(7606), 534:213-217.
[13]
Walsh ME, Bhattacharya A, Sataranatarajan K, et al. The histone deacetylase inhibitor butyrate improves metabolism and reduces muscle atrophy during aging[J]. Aging Cell, 2015, 14(6):957-970.
[14]
Houghton MJ, Kerimi A, Mouly V, et al. Gut microbiome catabolites as novel modulators of muscle cell glucose metabolism[J]. FASEB J, 2019, 33(2):1887-1898.
[15]
Ticinesi A, Tana C, Nouenne A. The intestinal microbiome and its relevance for functionality in older persons[J]. Curr Opin Clin Nutr Metab Care, 2019, 22(1):4-12.
[16]
Reid KF, Fielding RA. Skeletal muscle power: A critical determinant of physical functioning in older adults[J]. Exerc Sport Sci Rev, 2012, 40(1):4-12.
[17]
Bäckhed F, Manchester JK, Semenkovich CF, et al. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice[J]. Proc Natl Acad Sci U S A, 2007, 104(3):979-984.
[18]
Yan HL, Diao H, Xiao Y, et al. Gut microbiota can transfer fiber characteristics and lipid metabolic profiles of skeletal muscle from pigs to germ-free mice[J]. Sci Rep, 2016, 6:31786.
[19]
Goodpaster BH, Carlson CL, Visser M, et al. Attenuation of skeletal muscle and strength in the elderly: The health ABC study[J]. J Appl Physiol (1985), 2001, 90(6):2157-2165.
[20]
Agrawal K, Agarwal Y, Chopra RK, et al. Evaluation of MR spectroscopy and diffusion-weighted MRI in postmenopausal bone strength[J/OL]. Cureus, 2015, 7(9):e327.
[21]
van Tongeren SP, Slaets JP, Harmsen HJ, et al. Fecal microbiota composition and frailty[J]. Appl Environ Microbiol, 2005, 71(10):6438-6442.
[22]
Fielding RA, Reeves AR, Jasuja R, et al. Muscle strength is increased in mice that are colonized with microbiota from high-functioning older adults[J]. Exp Gerontol, 2019, 127:110722.
[23]
Chen YM, Wei L, Chiu YS, et al. Lactobacillus plantarum TWK10 supplementation improves exercise performance and increases muscle mass in mice[J]. Nutrients, 2016, 8(4):205.
[24]
Ticinesi A, Lauretani F, Milani C, et al. Aging gut microbiota at the cross-road between nutrition, physical frailty, and sarcopenia: is there a gut-muscle axis[J]? Nutrients, 2017, 9(12):1303.
[25]
Sovran B, Hugenholtz F, Elderman M, et al. Age-associated impairment of the mucus barrier function is associated with profound changes in microbiota and immunity[J]. Sci Rep, 2019, 9(1):1437.
[26]
Buford TW, Carter CS, Vanderpol WJ, et al. Composition and richness of the serum microbiome differ by age and link to systemic inflammation[J]. Geroscience, 2018, 40(3):257-268.
[27]
Ferrucci L,Fabbri E. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty[J]. Nat Rev Cardiol, 2018, 15(9):505-522.
[28]
Bano G, Trevisan C, Carraro S, et al. Inflammation and sarcopenia: A systematic review and meta-analysis[J]. Maturitas, 2017, 96:10-15.
[29]
Enoki Y, Watanabe H, Arake R, et al. Indoxyl sulfate potentiates skeletal muscle atrophy by inducing the oxidative stress-mediated expression of myostatin and atrogin-1[J]. Sci Rep, 2016, 6:32084.
[30]
Cox NJ, Bowyer R, Lochlainn MN, et al. The composition of the gut microbiome differs among community dwelling older people with good and poor appetite[J]. J Cachexia Sarcopenia Muscle, 2021, 12(2):368-377.
[31]
Allen JM, Mailing LJ, Niemiro GM, et al. Exercise alters gut microbiota composition and function in lean and obese humans[J]. Med Sci Sports Exerc, 2018, 50(4):747-757.
[32]
Barton W, Penney NC, Cronin O, et al. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level[J]. Gut, 2018, 67(4):625-633.
[33]
Fiuza-Luces C, Santos-Lozano A, Joyner M, et al. Exercise benefits in cardiovascular disease: Beyond attenuation of traditional risk factors[J]. Nat Rev Cardiol, 2018, 15(12):731-743.
[34]
Bian GR, Gloor GB, Gong AH, et al. The gut microbiota of healthy aged chinese is similar to that of the healthy young[J/OL]. mSphere, 2017, 2(5):e00327-17.
[35]
Bindels LB, Beck R, Schakman O, et al. Restoring specific lactobacilli levels decreases inflammation and muscle atrophy markers in an acute leukemia mouse model[J/OL]. PLoS One, 2012, 7(6):e37971.
[36]
Buigues C, Fernández-Garrido J, Pruimboom L, et al. Effect of a prebiotic formulation on frailty syndrome: A randomized, double-blind clinical trial[J]. Int J Mol Sci, 2016, 17(6):932.
[37]
Vandeputte D, Falony G, Vieira-Silva S, et al. Prebiotic inulin-type fructans induce specific changes in the human gut microbiota[J]. Gut, 2017, 66(11):1968-1974.
[38]
Mao B, Gu J, Li D, et al. Effects of different doses of fructooligosaccharides (FOS) on the composition of mice fecal microbiota, especially the bifidobacterium composition[J]. Nutrients, 2018, 10(8):1105.
[39]
Rizzoli R. Nutritional influence on bone: role of gut microbiota[J]. Aging Clin Exp Res, 2019, 31(6):743-751.
[40]
van Dronkelaar C, van Velzen A, Abdelrazek M, et al. Minerals and sarcopenia; The role of calcium, iron, magnesium, phosphorus, potassium, selenium, sodium, and zinc on muscle mass, muscle strength, and physical performance in older adults: A systematic review[J]. J Am Med Dir Assoc, 2018, 19(1):6-11.
[41]
Theou O, Jayanama K, Fernández-Garrido J, et al. Can a prebiotic formulation reduce frailty levels in older people?[J]. J Frailty Aging, 2019, 8(1):48-52.
[42]
Antushevich H. Fecal microbiota transplantation in disease therapy[J]. Clin Chim Acta, 2020, 503:90-98.
[43]
Hsu TH, Chiu CC, Wang YC, et al. Supplementation with beef extract improves exercise performance and reduces post-exercise fatigue independent of gut microbiota[J]. Nutrients, 2018, 10(11):1740.
[44]
Sung MM, Byrne NJ, Robertson IM, et al. Resveratrol improves exercise performance and skeletal muscle oxidative capacity in heart failure[J]. Am J Physiol Heart Circ Physiol, 2017, 312(4):H842-H853.
[1] 陈晓玲, 钟永洌, 刘巧梨, 李娜, 张志奇, 廖威明, 黄桂武. 超高龄髋膝关节术后谵妄及心血管并发症风险预测[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 575-584.
[2] 戴睿, 张亮, 陈浏阳, 张永博, 吴丕根, 孙华, 杨盛, 孟博. 肠道菌群与椎间盘退行性变相关性的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 546-549.
[3] 奚玲, 仝瀚文, 缪骥, 毛永欢, 沈晓菲, 杜峻峰, 刘晔. 基于肌少症构建的造口旁疝危险因素预测模型[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 48-51.
[4] 李玲, 刘亚, 李培玲, 张秀敏, 李萍. 直肠癌患者术后肠道菌群的变化与抑郁症相关性研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 607-610.
[5] 宋俊锋, 张珍珍. 单侧初发性腹股沟斜疝老年患者经腹腹膜前疝修补术中残余疝囊腹直肌下缘固定效果评估[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 670-674.
[6] 张晋伟, 董永红, 王家璇. 基于GBD2021 数据库对中国与全球老年人疝疾病负担和健康不平等的分析比较[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 708-716.
[7] 袁志静, 黄杰, 何国安, 方辉强. 罗哌卡因联合右美托咪定局部阻滞麻醉在老年腹腔镜下无张力疝修补术中的应用[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 557-561.
[8] 邵世锋, 肖钦, 沈方龙, 张迅, 郝志鹏, 伍正彬, 谢晓娟, 王耀丽. 老年胸主动脉钝性伤的重症救治分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 762-767.
[9] 蔡艺丹, 方坚, 张志强, 陈莉, 张世安, 夏磊, 阮梅, 李东良. 经颈静脉肝内门体分流术对肝硬化门脉高压患者肠道菌群及肝功能的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 285-293.
[10] 王贝贝, 崔振义, 王静, 王晗妍, 吕红芝, 李秀婷. 老年股骨粗隆间骨折患者术后贫血预测模型的构建与验证[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 355-362.
[11] 崔健, 夏青, 林云, 李光玲, 李心娜, 王位. 血小板与淋巴细胞比值、免疫球蛋白、心肌酶谱及心电图对中老年肝硬化患者病情及预后的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 400-406.
[12] 宋燕秋, 戚桂艳, 杨双双, 周萍. 重症急性胰腺炎肠道菌群特征及早期肠内营养联合微生态制剂治疗的临床价值[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 442-447.
[13] 邱岭, 朱旭丽, 浦坚, 邢苗苗, 吴佳玲. 糖尿病肾病患者肠道菌群生态特点与胃肠道功能障碍的关联性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 453-458.
[14] 赵小民, 杨军, 田巍巍. 枳术颗粒联合利那洛肽治疗便秘型肠易激综合征的临床研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 465-469.
[15] 刘春峰, 徐朝晖, 施红伟, 陈瑢, 马腾飞, 李鹏飞, 袁蓉, 陈建荣, 徐爱明. 机械通气患者肌肉减少症的诊断及其对预后的影响[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 820-825.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?