[1] |
Riordan EA, Little C, Hunter D. Pathogenesis of post-traumatic OA with a view to intervention[J]. Best Pract Res Clin Rheumatol, 2014, 28(1):17-30.
|
[2] |
Friel NA, Chu CR. The role of ACL injury in the development of posttraumatic knee osteoarthritis[J]. Clin Sports Med, 2013, 32(1):1-12.
|
[3] |
Han PF, Wei L, Duan ZQ, et al. Contribution of IL-1β, 6 and TNF-α to the form of post-traumatic osteoarthritis induced by "idealized" anterior cruciate ligament reconstruction in a porcine model[J]. Int Immunopharmacol, 2018, 65:212-220.
|
[4] |
Luc B, Gribble PA, Pietrosimone BG. Osteoarthritis prevalence following anterior cruciate ligament reconstruction: a systematic review and numbers-needed-to-treat analysis[J]. J Athl Train, 2014, 49(6):806-819.
|
[5] |
Ajuied A, Wong F, Smith C, et al. Anterior cruciate ligament injury and radiologic progression of knee osteoarthritis: A systematic review and meta-analysis[J]. Am J Sports Med, 2014, 42(9):2242-2252.
|
[6] |
Thomas AC, Hubbard-Turner T, Wikstrom EA, et al. Epidemiology of posttraumatic osteoarthritis[J]. J Athl Train, 2017, 52(6):491-496.
|
[7] |
Jones MH, Spindler KP. Risk factors for radiographic joint space narrowing and patient reported outcomes of post-traumatic osteoarthritis after ACL reconstruction: Data from the MOON cohort[J]. J Orthop Res, 2017, 35(7):1366-1374.
|
[8] |
Wang LJ, Zeng N, Yan ZP, et al. Post-traumatic osteoarthritis following ACL injury[J]. Arthritis Res Ther, 2020, 22(1):57-61.
|
[9] |
Lieberthal J, Sambamurthy N, Scanzello CR. Inflammation in joint injury and post-traumatic osteoarthritis[J]. Osteoarthritis Cartilage, 2015, 23(11):1825-1834.
|
[10] |
Carbone A, Rodeo S. Review of current understanding of post-traumatic osteoarthritis resulting from sports injuries[J]. J Orthop Res, 2017, 35(3):397-405.
|
[11] |
Racine J, Aaron RK. Post-traumatic osteoarthritis after ACL injury[J]. R I Med J, 2014, 97(11):25-28.
|
[12] |
Ramme AJ, Lendhey M, Raya JG, et al. A novel rat model for subchondral microdamage in acute knee injury: a potential mechanism in post-traumatic osteoarthritis[J]. Osteoarthritis Cartilage, 2016, 24(10):1776-1785.
|
[13] |
Pauly HM, Larson BE, Coatney GA, et al. Assessment of cortical and trabecular bone changes in two models of post-traumatic osteoarthritis: Bone changes in model of traumatic OA[J]. J Orthop Res, 2015, 33(12):1835-1845.
|
[14] |
Smith TO, Postle K, Penny F, et al. Is reconstruction the best management strategy for anterior cruciate ligament rupture? A systematic review and meta-analysis comparing anterior cruciate ligament reconstruction versus non-operative treatment[J]. Knee, 2014, 21(2):462-470.
|
[15] |
Elsaid KA, Fleming BC, Oksendahl HL, et al. Decreased lubricin concentrations and markers of joint inflammation in the synovial fluid of patients with anterior cruciate ligament injury[J]. Arthritis Rheum, 2008, 58(6):1707-1715.
|
[16] |
Chang JC, Sebastian A, Murugesh DK, et al. Global molecular changes in a tibial compression induced ACL rupture model of post-traumatic osteoarthritis[J]. J Orthop Res, 2017, 35(3):474-485.
|
[17] |
Palmieri-Smith RM, Thomas AC. A neuromuscular mechanism of posttraumatic osteoarthritis associated with ACL injury[J]. Exerc Sport Sci Rev, 2009, 37(3):147-153.
|
[18] |
Segal NA, Glass NA, Torner J, et al. Quadriceps weakness predicts risk for knee joint space narrowing in women in the MOST cohort[J]. Osteoarthritis Cartilage, 2010, 18(6):769-775.
|
[19] |
Øiestad BE, Juhl CB, Eitzen I, et al. Knee extensor muscle weakness is a risk factor for development of knee osteoarthritis. A systematic review and meta-analysis[J]. Osteoarthritis Cartilage, 2015, 23(2):171-177.
|
[20] |
Dare D, Rodeo S. Mechanisms of post-traumatic osteoarthritis after ACL injury[J]. Curr Rheumatol Rep, 2014, 16(10):448-451.
|
[21] |
Teichtahl AJ, Wluka AE, Wijethilake P, et al. Wolff’s law in action: A mechanism for early knee osteoarthritis[J]. Arthritis Res Ther, 2015, 17(1):207-213.
|
[22] |
Titchenal MR, Chu CR, Erhart-Hledik JC, et al. Early changes in knee center of rotation during walking after anterior cruciate ligament reconstruction correlate with later changes in patient-reported outcomes[J]. Am J Sports Med, 2017, 45(4):915-921.
|
[23] |
Proffen BL, Sieker JT, Murray MM, et al. Extracellular matrix-blood composite injection reduces post-traumatic osteoarthritis after anterior cruciate ligament injury in the rat[J]. J Orthop Res, 2016, 34(6):995-1003.
|
[24] |
Heard BJ, Barton KI, Chung M, et al. Single intra-articular dexamethasone injection immediately post-surgery in a rabbit model mitigates early inflammatory responses and post-traumatic osteoarthritis-like alterations[J]. J Orthop Res, 2015, 33(12):1826-1834.
|
[25] |
Svoboda SJ. ACL injury and posttraumatic osteoarthritis[J]. Clinics in Sports Medicine, 2014, 33(4):633-640.
|
[26] |
Henrotin Y, Mobasheri A. Natural products for promoting joint health and managing osteoarthritis[J]. Curr Rheumatol Rep, 2018, 20(11):72-76.
|
[27] |
Fischenich KM, Pauly HM, Button KD, et al. A study of acute and chronic tissue changes in surgical and traumatically-induced experimental models of knee joint injury using magnetic resonance imaging and micro-computed tomography[J]. Osteoarthritis Cartilage, 2017, 25(4): 561-569.
|
[28] |
Eagle S, Potter HG, Koff MF. Morphologic and quantitative magnetic resonance imaging of knee articular cartilage for the assessment of post-traumatic osteoarthritis[J]. J Orthop Res, 2017, 35(3):412-423.
|
[29] |
Whittaker JL, Toomey CM, Woodhouse LJ, et al. Association between MRI-defined osteoarthritis, pain, function and strength 3-10 years following knee joint injury in youth sport[J]. Br J Sports Med, 2018, 52(14): 934-939.
|
[30] |
Silvestri E, Corazza A, Molfetta L, et al. Metabolic bone changes in osteoarthritis: The role of imaging and pathogenetic interpretation[J]. J Biol Regul Homeost Agents, 2015, 29(3):737-743.
|
[31] |
Tjörnstrand J, Neuman P, Svensson J, et al. Osteoarthritis development related to cartilage quality-the prognostic value of dGEMRIC after anterior cruciate ligament injury[J]. Osteoarthritis Cartilage, 2019, 27(11):1647-1652.
|
[32] |
Jeon OH, Kim C, Laberge RM, et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment[J]. Nat Med, 2017, 23(6):775-781.
|
[33] |
Bajpayee AG, De la Vega RE, Scheu M, et al. Sustained intra-cartilage delivery of low dose dexamethasone using a cationic carrier for treatment of post traumatic osteoarthritis[J]. Eur Cells Mater, 2017, 34:341-364.
|
[34] |
Dong Y, Liu H, Zhang X, et al. Inhibition of SDF-1α/CXCR4 signalling in subchondral bone attenuates post-traumatic osteoarthritis[J]. Int J Molecul Sci, 2016, 17(6):943-947.
|
[35] |
Sieker JT, Ayturk UM, Proffen BL, et al. Immediate administration of intraarticular triamcinolone acetonide after joint injury modulates molecular outcomes associated with early synovitis[J]. Arthritis Rheumatol, 2016, 68(7):1637-1647.
|
[36] |
Chang NJ, Lee KW, Chu CJ, et al. A preclinical assessment of early continuous passive motion and treadmill therapeutic exercises for generating chondroprotective effects after anterior cruciate ligament rupture[J]. Am J Sports Med, 2017, 45(10):2284-2293.
|
[37] |
Frobell RB, Roos EM, Roos HP, et al. A randomized trial of treatment for acute anterior cruciate ligament tears[J]. N Engl J Med, 2010, 363(4):331-342.
|
[38] |
Barbosa GM, Cunha JE, Cunha TM, et al. Clinical-like cryotherapy improves footprint patterns and reduces synovial inflammation in a rat model of post-traumatic knee osteoarthritis[J]. Sci Rep, 2019, 9(1):14518-14520.
|