切换至 "中华医学电子期刊资源库"

中华老年病研究电子杂志 ›› 2019, Vol. 06 ›› Issue (02) : 35 -39. doi: 10.3877/cma.j.issn.2095-8757.2019.02.003

所属专题: 文献

综述

内环境对肾脏衰老的影响
张恒达1, 刘超1, 孙雪峰1,()   
  1. 1. 100853,北京,中国人民解放军总医院肾脏病科 肾脏疾病国家重点实验室暨国家慢性肾病临床医学中心
  • 收稿日期:2019-01-30 出版日期:2019-05-28
  • 通信作者: 孙雪峰
  • 基金资助:
    国家自然科学基金面上项目(81870463); 国家"973"项目(2013CB530800)

Effect of internal environment on renal aging

Hengda Zhang1, Chao Liu1, Xuefeng Sun1,()   

  1. 1. Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing 100853, China
  • Received:2019-01-30 Published:2019-05-28
  • Corresponding author: Xuefeng Sun
  • About author:
    Corresponding author: Sun Xuefeng, Email:
引用本文:

张恒达, 刘超, 孙雪峰. 内环境对肾脏衰老的影响[J]. 中华老年病研究电子杂志, 2019, 06(02): 35-39.

Hengda Zhang, Chao Liu, Xuefeng Sun. Effect of internal environment on renal aging[J]. Chinese Journal of Geriatrics Research(Electronic Edition), 2019, 06(02): 35-39.

肾脏衰老是老年肾脏疾病的基础。机体内环境通过调控器官细胞凋亡、自噬、炎症以及再生修复进而影响器官的衰老。本文结合自身团队关于内环境影响肾脏衰老的研究工作,全面复习国内外相关文献,介绍内环境影响肾脏衰老的动物模型以及影响肾脏衰老和老年肾脏疾病的相关机制,并对内环境影响肾脏衰老的远期研究提出设想,旨在为相关基础研究和临床转化提供借鉴和参考。

Renal aging is the basis of renal disease in the elderly. The internal environment affects organ aging by regulating apoptosis, autophagy, inflammation, regeneration and repair. In this paper, we summarize our research on the effects of the internal environment on renal aging, and reviews the literature at home and abroad, introduce the establishment of animal models of internal environment affecting renal aging and the research progress of the mechanisms affecting renal aging and elderly renal diseases, and put forward some research proposal. To provide some valuable reference for related basic research and clinical transformation.

[1]
Zhang L, Wang F, Wang L, et al. Prevalence of chronic kidney disease in China: a cross-sectional survey[J]. Lancet 2012, 379(9818):815-822.
[2]
Coresh J, Selvin E, Stevens LA, et al. Prevalence of chronic kidney disease in the United States[J]. JAMA, 2007, 298(17):2038-2047.
[3]
Waikar SS, Curhan GC, Wald R, et al. Declining mortality in patients with acute renal failure, 1988 to 2002[J]. J Am Soc Nephrol, 2006, 17(4):1143-1150.
[4]
Ali T, Khan I, Simpson W, et al. Incidence and outcomes in acute kidney injury: a comprehensive population-based study[J]. J Am Soc Nephrol, 2007, 18(4):1292-1298.
[5]
Yang L, Xing G, Wang L,et al. Acute kidney injury in China: a cross-sectional survey[J]. Lancet, 2015, 386(10002):1465-1471.
[6]
Kohli HS, Bhat A, Jairam A, et al. Predictors of mortality in acute renal failure in a developing country: a prospective study[J]. Ren Fail, 2007, 29(4):463-469.
[7]
Villeda SA, Luo J, Mosher KI, et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function[J].Nature, 2011, 477(7362):90-94
[8]
Loffredo FS, Steinhauser ML, Jay SM, et al. Growth differentiation factor 11 is a circulating factor that reverses age_related cardiac hypertrophy[J]. Cell,2013,153(4):828-839.
[9]
Ruckh JM, Zhao JW, Shadrach JL, et al. Rejuvenation of regeneration in the aging central nervous system[J]. Cell Stem Cell, 2012, 10(1):96-103.
[10]
Conboy IM, Conboy MJ, Wagers AJ, et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment[J].Nature, 2005, 433(7027):760-764.
[11]
Niikura Y, Niikura T,,Wang N, et al. Systemic signals in aged males exert potent rejuvenating effects on the ovarian follicle reserve in mammalian females[J]. Aging (Albany NY), 2010, 2(12):999-1003.
[12]
Wright DE, Wagers AJ, Gulati AP, et al. Physiological migration of hematopoietic stem and progenitor cells[J]. Science 2001, 294(5548):1933-1936.
[13]
Eggel A, Wyss-Coray T. A revival of parabiosis in biomedical research[J]. Swiss Med Wkly, 2014, 144:w13914.
[14]
Li D, Zhao D, Zhang W, et al. Identification of proteins potentially associated with renal aging in rats[J]. Aging (Albany NY), 2018, 10(6):1192-1205.
[15]
Masoro EJ. Caloric restriction and aging: an update[J]. Exp Gerontol, 2000 , 35(3):299-305.
[16]
Masoro EJ. Overview of caloric restriction and ageing[J]. Mech Ageing Dev, 2005, 126(9):913-922.
[17]
Huang Q, Ning Y, Liu D, et al. A young blood environment decreases aging of senile mice kidneys[J]. J Gerontol A Biol Sci Med Sci, 2018, 73(4):421-428.
[18]
Ding R, Chen X, Wu D, et al. Effects of aging on kidney graft function, oxidative stress and gene expression after kidney transplantation[J]. PLoS One, 2013, 8(6):e65613.
[19]
Zhang N, Li Z, Mu W, et al. Calorie restriction-induced SIRT6 activation delays aging by suppressing NF-κB signaling[J]. Cell Cycle, 2016, 15(7): 1009-1018.
[20]
Dong D, Cai GY, Ning YC, et al. Alleviation of senescence and epithelial-mesenchymal transition in aging kidney by short-term caloric restriction and caloric restriction mimetics via modulation of AMPK/mTOR signaling[J]. Oncotarget, 2017, 8(10):16109-16121.
[21]
Cui J, Shi S, Sun X, et al. Mitochondrial autophagy involving renal injury and aging is modulated by caloric intake in aged rat kidneys[J]. PLoS One, 2013, 8(7):e69720.
[22]
Wang WJ, Cai GY, Ning YC, et al. Hydrogen sulfide mediates the protection of dietary restriction against renal senescence in aged F344 rats[J]. Sci Rep, 2016, 6:30292.
[23]
Xu XM, Ning YC, Wang WJ, et al. Anti-inflamm-aging effects of long-term caloric restriction via overexpression of SIGIRR to inhibit NF-κB signaling pathway[J]. Cell Physiol Biochem, 2015, 37(4):1257-1270.
[24]
Liu D, Lun L, Huang Q, et al. Youthful systemic milieu alleviates renal ischemia-reperfusion injury in elderly mice[J]. Kidney Int, 2018, 94(2):268-279.
[25]
Liu D, Yin Z, Huang Q, et al. Exogenous biological renal support ameliorates renal pathology after ischemia reperfusion injury in elderly mice[J]. Aging (Albany NY), 2019, 11(7):2031-2044.
[26]
Zhang Y, Li Q, Liu D, et al. GDF11 improves tubular regeneration after acute kidney injury in elderly mice[J]. Sci Rep, 2016, 6:34624.
[27]
Wang Y, Fu B, Sun X, et al. Differentially expressed microRNAs in bone marrow mesenchymal stem cell-derived microvesicles in young and older rats and their effect on tumor growth factor-β1-mediated epithelial-mesenchymal transition in HK2 cells[J]. Stem Cell Res Ther, 2015, 6:185.
[28]
Xu XM, Cai GY, Bu R, et al. Beneficial effects of caloric restriction on chronic kidney disease in rodent models: a meta-analysis and systematic review[J]. PLoS One, 2015, 10(12):e0144442.
[29]
Ning YC, Cai GY, Zhuo L, et al. Beneficial effects of short-term calorie restriction against cisplatin-induced acute renal injury in aged rats[J]. Nephron Exp Nephrol, 2013, 124(3-4):19-27.
[30]
孙雪峰.器官衰老研究的问题与思考[J].中华老年病研究电子杂志,2014,1(1):12-14.
[1] 张永博, 张亮, 陈浏阳, 戴睿, 孙华, 杨盛, 孟博, 彭晴. 线粒体与椎间盘退变[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 265-269.
[2] 樊逸隽, 杨枫, 王玮, 殷鹤英, 刘俊. 喉前淋巴结转移对甲状腺乳头状癌诊疗价值的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(04): 306-310.
[3] 张林, 刘芳, 赵静, 刘勇, 周青. 远程康复在慢性阻塞性肺疾病患者肺康复中的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 601-604.
[4] 郝昭昭, 李多, 南岩东. 以肺磨玻璃结节为表现的肺腺癌发生机制研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 435-437.
[5] 李丹阳, 李满祥. 肠道菌群失调在肺动脉高压发病中的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 432-434.
[6] 谯钰琪, 惠盼, 南岩东. DGKζ的结构功能及研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 117-120.
[7] 秦富豪, 郑正, 江滨. 间充质干细胞在克罗恩病肛瘘治疗中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 172-177.
[8] 蓝冰, 王怀明, 王辉, 马波. 局部晚期结肠癌膀胱浸润的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 505-511.
[9] 李青霖, 宋仁杰, 周飞虎. 一种重型劳力性热射病相关急性肾损伤小鼠模型的建立与探讨[J]. 中华肾病研究电子杂志, 2023, 12(05): 265-270.
[10] 栾恒钰, 赛晓勇. 创伤后应激障碍的治疗现状及研究进展[J]. 中华神经创伤外科电子杂志, 2023, 09(02): 112-118.
[11] 黄文鹏, 邱永康, 杨琦, 宋乐乐, 陈钊, 范岩, 康磊. PET相关影像组学在肿瘤预后中的研究进展[J]. 中华消化病与影像杂志(电子版), 2023, 13(02): 104-110.
[12] 李田, 徐洪, 刘和亮. 尘肺病的相关研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(08): 900-905.
[13] 吴一菡, 雷章, 卢宏达. MUC16/CA125在良恶性肿瘤诊治中的作用及其研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 591-595.
[14] 李世凯, 梁佳, 何艳艳, 于毅, 李天晓, 常金龙, 贺迎坤. 兔颈动脉粥样硬化性狭窄模型在介入治疗的应用进展[J]. 中华介入放射学电子杂志, 2023, 11(04): 357-362.
[15] 高飞, 李惠凯, 冯秀雪, 杜晨, 韩珂, 柴宁莉, 令狐恩强. 3%聚桂醇消融动物囊性肿瘤模型的有效性和安全性研究[J]. 中华胃肠内镜电子杂志, 2023, 10(01): 31-36.
阅读次数
全文


摘要