切换至 "中华医学电子期刊资源库"

中华老年病研究电子杂志 ›› 2018, Vol. 05 ›› Issue (01) : 43 -48. doi: 10.3877/cma.j.issn.2095-8757.2018.01.008

所属专题: 文献

综述

线粒体DNA在肺纤维化发病机制中的作用
薛彤彤1, 刘学军2,(), 杜毓锋2   
  1. 1. 030001 太原,山西医科大学第一临床医学院
    2. 030001 太原,山西医科大学第一医院老年病科
  • 收稿日期:2017-11-20 出版日期:2018-02-28
  • 通信作者: 刘学军

The role of mitochondrial DNA in pathogenesis of pulmonary fibrosis

Tongtong Xue1, Xuejun Liu2,(), Yufeng Du2   

  1. 1. The First Clinical Medical School of Shanxi Medical University, Taiyuan 030001, China
    2. Department of Geriatric Medicine, the First Affiliated Hospital of Shanxi Medical University, Taiyuan 030001, China
  • Received:2017-11-20 Published:2018-02-28
  • Corresponding author: Xuejun Liu
  • About author:
    Corresponding Author: Liu Xuejun, Email:
引用本文:

薛彤彤, 刘学军, 杜毓锋. 线粒体DNA在肺纤维化发病机制中的作用[J/OL]. 中华老年病研究电子杂志, 2018, 05(01): 43-48.

Tongtong Xue, Xuejun Liu, Yufeng Du. The role of mitochondrial DNA in pathogenesis of pulmonary fibrosis[J/OL]. Chinese Journal of Geriatrics Research(Electronic Edition), 2018, 05(01): 43-48.

线粒体DNA是体内重要的遗传物质之一,参与编码13种蛋白质,易被活性氧所损伤。近年的研究发现,线粒体DNA损伤可导致线粒体功能障碍,与肺上皮细胞凋亡和肺纤维化的发病关系密切。维持线粒体DNA的完整性可能为治疗肺纤维化提供新的靶点。本文现对线粒体DNA在肺纤维化中的作用及其损伤修复机制的研究进展作简要概述,旨在为临床提供参考。

Mitochondrial DNA (mtDNA) encoding 13 proteins, is one of the most important genetic material in vivo. mtDNA can be easily damaged by reactive oxygen species. Recent studies have found that mtDNA damage can lead to mitochondrial dysfunction, which is linked with pulmonary epithelial cell apoptosis and the pathogenesis of pulmonary fibrosis. Maintaining mtDNA integrity may provide new therapeutic targets for the treatment of pulmonary fibrosis. The work reviews the role of mtDNA in the pulmonary fibrosis and the advances of mtDNA damage repair mechanisms.

[1]
Caminati A,Madotto F,Cesana G, et al. Epidemiologicalstudies in idiopathic pulmonary fibrosis:pitfalls in methodologiesand data interpretation[J].Eur Respir Rev, 2015, 24(137):436-444.
[2]
Anderson S. Shotgun DNA sequencing using cloned DNase I-generated fragments[J]. Nucleic Acids Res, 1981, 9(13):3015-3027.
[3]
Zhang D,Wang L,Guo H, et al. Complete mitochondrial genome of Florida pompano Trachinotus carolinus ( Teleostei, Carangidae)[J]. Mitochondrial DNA A DNA Mapp Seq Anal, 2016, 27(1):597-598.
[4]
Held NM,Houtkooper RH. Mitochondrial quality control pathways as determinants of metabolic health[J]. Bioessays 2015, 37(8):867-876.
[5]
Gazdhar A,Lebrecht D,Roth M, et al. Time-dependent and somatically acquired mitochondrial DNA mutagenesis and respiratory chain dysfunction in a scleroderma model of lung fibrosis[J].Sci Rep, 2014, 4:5336.
[6]
Rowlands DJ. Mitochondria dysfunction: A novel therapeutic target in pathological lung remodeling or bystander[J]? Pharmacol Ther, 2016, 166:96-105.
[7]
Cheresh P,Kim SJ,Tulasiram S, et al. Oxidative stress and pulmonary fibrosis[J]. Biochim Biophys Acta, 2013, 1832(7):1028-1040.
[8]
Merrill WW,Reynolds HY. Bronchial lavage in inflammatory lung disease[J]. Clin Chest Med,1983, 4(1):71-84.
[9]
Baroke E,Gauldie J,Kolb M. New treatment and markers of prognosis for idiopathic pulmonary fibrosis: lessons learned from translational research[J]. Expert Rev Respir Med, 2013, 7(5):465-478.
[10]
King TE Jr,Pardo A,Selman M. Idiopathic pulmonary fibrosis[J]. Lancet, 2011, 378(9807):1949-1961.
[11]
Noble PW,Barkauskas CE,Jiang D. Pulmonary fibrosis:patternsand perpetrators[J]. J Clin Invest, 2012, 122(8):2756-2762.
[12]
Wang XM,Chen JJ,Lancaster L, et al. Caveolin-1: a critical regulator of lung fibrosis in idiopathic pulmonary fibrosis[J]. J Exp Med, 2006, 203(13):2895-2906.
[13]
Chilosi M,Carloni A,Rossi A, et al. Premature lung aging and cellular senescence in the pathogenesis of idiopathic pulmonary fibrosis and COPD/emphysema.[J]. Transl Res, 2013, 162(3):156-173.
[14]
Bao L,Diao H,Dong N, et al. Histone deacetylase inhibitor induces cell apoptosis and cycle arrest in lung cancer cells via mitochondrial injury and p53 up-acetylation[J]. Cell Biol Toxicol, 2016, 32(6):469-482.
[15]
Wallace DC. A mitochondrial bioenergetic etiology of disease[J]. J Clin Invest, 2013, 123(4):1405-1412.
[16]
Wang Z,Choi S,Lee J, et al. Mitochondrial variations in non-small cell lung cancer (NSCLC) survival[J]. Cancer Inform, 2015, 14(Suppl):1-9.
[17]
Schumacker PT,Gillespie MN,Nakahira K, et al. Mitochondria in lung biology and pathology: More than just a powerhouse[J]. Am J Physiol Lung Cell Mol Physiol, 2014, 306(11):L962–L974.
[18]
Ganta KK,Mandal A,Chaubey B. Depolarization of mitochondrial membrane potential is the initial event in non-nucleoside reverse transcriptase inhibitor efavirenz induced cytotoxicity[J]. Cell Biol Toxicol, 2017, 33(1):69-82.
[19]
Kim SJ,Cheresh P,Williams D, et al. Mitochondria-targeted Ogg1 and aconitase-2 prevent oxidant-induced mitochondrial DNA damage in alveolar epithelial cells[J]. J Biol Chem, 2014, 289(9):6165-6176.
[20]
Cheresh P,Morales-Nebreda L,Kim SJ, et al. Asbestos-induced pulmonary fibrosis is augmented in 8-oxoguanine DNA glycosylase knockout mice[J]. Am J Respir Cell Mol Biol, 2015, 52(1):25-36.
[21]
Kaniak-Golik A,Skoneczna A. Mitochondria-nucleus network for genome stability[J]. Free Radic Biol Med, 2015, 82:73-104.
[22]
Kincaid B,Bossy-Wetzel E. Forever young: SIRT3 a shield against mitochondrial meltdown, aging, and neurodegeneration[J]. Front Aging Neurosci, 2013, 5:48.
[23]
Bindu S,Pillai VB,Kanwal A, et al. SIRT3 blocks myofibroblast differentiation and pulmonary fibrosis by preventing mitochondrial DNA damage[J]. Am J Physiol Lung Cell Mol Physiol, 2017, 312(1): L68-L78.
[24]
Sosulski ML,Gongora R,Feghali-bostwick C, et al. Sirtuin 3 deregulation promotes pulmonary fibrosis[J]. J Gerontol A Biol Sci Med Sci, 2017, 72(5): 595-602.
[1] 钟雅雯, 王煜, 王海臻, 黄莉萍. 肌苷通过抑制线粒体通透性转换孔开放缓解缺氧/复氧诱导的人绒毛膜滋养层细胞凋亡[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 525-533.
[2] 赵淑樱, 张聃. 腹腔镜胃癌外科治疗进展与发展趋势[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(04): 459-462.
[3] 何羽. 腔镜微创手术治疗分化型甲状腺癌的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(04): 456-458.
[4] 王亚岚, 倪婧, 余世庆, 陶银花, 张荣. 尼达尼布抗纤维化治疗特发性肺纤维化的耐受性和疗效预测因素分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 750-755.
[5] 刘璐璐, 何羽. 慢性阻塞性肺病患者睡眠障碍的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 836-839.
[6] 周璇, 谢莉, 邹娟. 尼达尼布对特发性肺纤维化肺功能、肺纤维化程度及PDGF、PGE2、TGF-β1的影响[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 368-372.
[7] 吴沛玲, 娄月妍, 张洪艳, 陈东方, 刘雪青, 赵丽芳, 薛姗, 蒋捍东. 线粒体相关基因在特发性肺纤维化中的分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(02): 178-184.
[8] 邱凌霄, 王创业, 卿斌, 刘锦程, 张鑫烨, 武文娟, 邢德冰, 郭亮, 徐智, 王斌. 基于转录组学筛选特发性肺纤维化的枢纽基因和信号通路[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(02): 212-217.
[9] 王娟, 刘晔, 熊威, 蒋财磊, 贺燕, 叶青松. 间充质干细胞缓解阿尔茨海默病氧化应激的新思路[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 93-106.
[10] 杨兴业, 彭旭云, 曾倩, 梁伟铖, 肖翠翠, 郑俊, 姚嘉. LMO7通过靶向铁死亡促进肝细胞癌生长[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 370-376.
[11] 白正林, 高明, 孟增东. 肩关节置换术后假体周围感染的研究进展[J/OL]. 中华肩肘外科电子杂志, 2024, 12(03): 271-276.
[12] 苗楠, 宗子钰. 脑出血后继发性脑损伤与线粒体相关机制的研究进展[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(02): 107-111.
[13] 田学, 谢晖, 王瑞兰. 急性呼吸窘迫综合征相关肺纤维化的研究进展[J/OL]. 中华重症医学电子杂志, 2024, 10(03): 258-264.
[14] 武继敏, 袁春雨, 王鲁佳, 陈伟霞, 李晓东, 马丽虹. 重复经颅磁刺激治疗脑卒中后中枢性疼痛的研究进展[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(03): 182-186.
[15] 刘琦, 王守凯, 王帅, 苏雨晴, 马壮, 陈海军, 司丕蕾. 乳腺癌肿瘤内微生物组的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 841-845.
阅读次数
全文


摘要