切换至 "中华医学电子期刊资源库"

中华老年病研究电子杂志 ›› 2016, Vol. 03 ›› Issue (01) : 26 -29. doi: 10.3877/cma.j.issn.2095-8757.2016.01.006

所属专题: 文献

综述

MicroRNA检测对阿尔茨海默病早期诊断作用的研究进展
岳影星1, 陈莎莎1, 暴一众1, 毛根祥1, 王国付1,(), 严静1,()   
  1. 1. 310013 杭州,浙江医院;浙江省老年医学研究所;浙江省老年医学重点实验室
  • 收稿日期:2016-01-17 出版日期:2016-02-28
  • 通信作者: 王国付, 严静

Circulating microRNA as biomarker in patients with Alzheimer's disease

Yingxing Yue1, Shasha Chen1, Yizhong Bao1, Genxiang Mao1, Guofu Wang1(), Jing Yan1()   

  1. 1. Zhejiang Hospital, Zhejiang Institute of Geriatric Medicine, Key Laboratory of Geriatric Medicine of Zhejiang Province, Hangzhou 310013, China
  • Received:2016-01-17 Published:2016-02-28
  • Corresponding author: Guofu Wang, Jing Yan
引用本文:

岳影星, 陈莎莎, 暴一众, 毛根祥, 王国付, 严静. MicroRNA检测对阿尔茨海默病早期诊断作用的研究进展[J]. 中华老年病研究电子杂志, 2016, 03(01): 26-29.

Yingxing Yue, Shasha Chen, Yizhong Bao, Genxiang Mao, Guofu Wang, Jing Yan. Circulating microRNA as biomarker in patients with Alzheimer's disease[J]. Chinese Journal of Geriatrics Research(Electronic Edition), 2016, 03(01): 26-29.

阿尔茨海默病(Alzheimer's disease,AD)是临床上常见的慢性神经退行性疾病,可引起语言、行为等认知障碍,截止目前其发病机制仍不十分清楚。microRNA(miRNA)作为AD新型的生物标志物,是近年的研究热点。目前的研究显示,miR-125b、miR-223、miR-342-3p、miR-34c、miR-384等可能是潜在的AD诊断标志物,而且多种miRNA的联合检测也可作为AD诊断标志物,但目前尚无多种miRNA联合检测与单个miRNA检测效果的比较研究。本文旨在对miRNA检测对AD早期诊断作用的研究进行综述。

Alzheimer's disease (AD) is a complicated progressive neurodegenerative diseaseleading to dementia including language and behavior, and its pathogenesis is still unknown. MicroRNA(miRNA)are recently focused on as novel biomarkers for AD patients. 16 eligible studies of circulating miRNA in AD detection were identified through PubMed, suggested that circulating miRNA (miR-125b,miR-223,miR-342-3p,miR-34c and miR-384,et al) may be potential, none-invasive and novel biomarkers of AD. Furthermore, the combination of some miRNA are also applied for AD diagnosis, but no studies report the comparision between single miRNA and miRNA signature for AD detection.

[1]
Brookmeyer R, Johnson E, Ziegler-Graham K, et al. Forecasting the global burden of Alzheimer's disease[J].Alzheimers Dement, 2007, 3(3): 186-191.
[2]
Nussbaum RL, Ellis CE. Alzheimer's disease and Parkinson's disease[J]. N Engl J Med, 2003, 348(14): 1356-1364.
[3]
Alzheimer's Association. 2012 Alzheimer's disease facts and figures[J]. Alzheimers Dement, 2012, 8(2): 131-168.
[4]
Ferri CP, Prince M, Brayne C, et al. Global prevalence of dementia: a Delphi consensus study[J]. Lancet, 2005, 366(9503): 2112-2117.
[5]
Campos C, Rocha NB, Vieira RT, et al. Treatment of cognitive deficits in Alzheimer's disease: a psychopharmacological review[J]. Psychiatr Danub, 2016, 28(1): 2-12.
[6]
Andrieu S, Coley N, Lovestone S, et al. Prevention of sporadic Alzheimer's disease: lessons learned from clinical trials and future directions[J]. Lancet Neurol, 2015, 14(9): 926-944.
[7]
Kang JH, Korecka M, Figurski MJ, et al. The Alzheimer's disease neuroimaging initiative 2 biomarker core: a review of progress and plans[J]. Alzheimers Dement, 2015, 11(7): 772-791.
[8]
Yang JS, Lai EC. Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants[J]. Mol Cell, 2011, 43(6): 892-903.
[9]
Treiber T, Treiber N, Meister G. Regulation of microRNA biogenesis and function[J]. Thromb Haemost, 2012, 107(4): 605-610.
[10]
Del VV, Denti MA. MicroRNA and lung cancer[J]. Adv Exp Med Biol, 2015, 889: 153-177.
[11]
Samanta S, Balasubramanian S, Rajasingh S, et al. MicroRNA: a new therapeutic strategy for cardiovascular diseases[J]. Trends Cardiovasc Med, 2016, pii: S1050-1738(16)00048-7[Epub ahead of print].
[12]
Hill JM, Lukiw WJ. microRNA (miRNA)-mediated pathogenetic signaling in Alzheimer's disease (AD) [J]. Neurochem Res, 2016, 41(1-2): 96-100.
[13]
Ambros V. The functions of animal microRNAs[J]. Nature, 2004, 431(7006): 350-355.
[14]
Bartel DP. MicroRNAs: target recognition and regulatory functions[J]. Cell, 2009, 136(2): 215-233.
[15]
Guo H, Ingolia NT, Weissman JS, et al. Mammalian microRNAs predominantly act to decrease target mRNA levels[J]. Nature, 2010, 466(7308): 835-840.
[16]
Shukla GC, Singh J, Barik S. MicroRNAs: processing, maturation, target recognition and regulatory functions[J]. Mol Cell Pharmacol, 2011, 3(3): 83-92.
[17]
Cogswell JP, Ward J, Taylor IA, et al. Identification of miRNA changes in Alzheimer's disease brain and CSF yields putative biomarkers and insights into disease pathways[J]. J Alzheimers Dis, 2008, 14(1): 27-41.
[18]
Garza-Manero S, Arias C, Bermudez-Rattoni F, et al. Identification of age-and disease-related alterations in circulating miRNAs in a mouse model of Alzheimer's disease[J]. Front Cell Neurosci, 2015, 9: 53.
[19]
Luo H, Wu Q, Ye X, et al. Genome-wide analysis of miRNA signature in the APPswe/PS1DeltaE9 mouse model of alzheimer's disease[J]. PLoS One, 2014, 9(8): e101725.
[20]
Liu QY, Chang MN, Lei JX, et al. Identification of microRNAs involved in Alzheimer's progression using a rabbit model of the disease[J]. Am J Neurodegener Dis, 2014, 3(1): 33-44.
[21]
van Harten AC, Mulders J, Scheltens P, et al. Differential expression of microRNA in cerebrospinal fluid as a potential novel biomarker for Alzheimer's disease[J]. J Alzheimers Dis, 2015, 47(1): 243-252.
[22]
Denk J, Boelmans K, Siegismund C, et al. MicroRNA profiling of CSF reveals potential biomarkers to detect Alzheimer's disease[J]. PLoS One, 2015, 10(5): e0126423.
[23]
Muller M, Jakel L, Bruinsma IB, et al. MicroRNA-29a is a candidate biomarker for Alzheimer's disease in cell-free cerebrospinal fluid[J]. Mol Neurobiol, 2015[Epub ahead of print].
[24]
Tan L, Yu JT, Liu QY, et al. Circulating miR-125b as a biomarker of Alzheimer's disease[J]. J Neurol Sci, 2014, 336(1-2): 52-56.
[25]
Galimberti D, Villa C, Fenoglio C, et al. Circulating miRNAs as potential biomarkers in Alzheimer's disease[J]. J Alzheimers Dis, 2014, 42(4): 1261-1267.
[26]
Tan L, Yu JT, Tan MS, et al. Genome-wide serum microRNA expression profiling identifies serum biomarkers for Alzheimer's disease[J]. J Alzheimers Dis, 2014, 40(4): 1017-1027.
[27]
Sorensen SS, Nygaard AB, Christensen T. miRNA expression profiles in cerebrospinal fluid and blood of patients with Alzheimer's disease and other types of dementia——an exploratory study[J]. Transl Neurodegener, 2015[Epub ahead of print].
[28]
Bhatnagar S, Chertkow H, Schipper HM, et al. Increased microRNA-34c abundance in Alzheimer's disease circulating blood plasma[J]. Front Mol Neurosci, 2014, 7: 2.
[29]
Liu CG, Wang JL, Li L, Wang PC. MicroRNA-384 regulates both amyloid precursor protein and beta-secretase expression and is a potential biomarker for Alzheimer's disease[J]. Int J Mol Med, 2014, 34(1): 160-166.
[30]
Lugli G, Cohen AM, Bennett DA, et al. Plasma Exosomal miRNAs in Persons with and without Alzheimer disease: altered expression and prospects for biomarkers[J]. PLoS One, 2015, 10(10): e0139233.
[31]
Ren RJ, Zhang YF, Dammer EB, et al. Peripheral blood microrna expression profiles in Alzheimer's disease: screening, validation, association with clinical phenotype and implications for molecular mechanism[J]. Mol Neurobiol, 2015.[Epub ahead of print]
[32]
Zhu Y, Li C, Sun A, et al. Quantification of microRNA-210 in the cerebrospinal fluid and serum: implications for Alzheimer's disease[J]. Exp Ther Med, 2015, 9(3): 1013-1017.
[33]
Jia LH, Liu YN. Downregulated serum miR-223 servers as biomarker in Alzheimer's disease[J]. Cell Biochem Funct, 2016.[Epub ahead of print]
[34]
Dong H, Li J, Huang L, et al. Serum microRNA profiles serve as novel viomarkers for the diagnosis of Alzheimer's disease[J]. Dis Markers, 2015, 2015: 625659.
[35]
Geekiyanage H, Jicha GA, Nelson PT, et al. Blood serum miRNA: non-invasive biomarkers for Alzheimer's disease[J]. Exp Neurol, 2012, 235(2): 491-496.
[36]
Satoh J, Kino Y, Niida S. MicroRNA-Seq data analysis pipeline to identify blood biomarkers for Alzheimer's disease from public data[J]. Biomark Insights, 2015, 10: 21-31.
[37]
Wu HZ, Ong KL, Seeher K, et al. Circulating microRNAs as biomarkers of Alzheimer's disease: a systematic review[J]. J Alzheimers Dis, 2015, 49(3): 755-766.
[38]
Cheng L, Doecke JD, Sharples RA, et al. Prognostic serum miRNA biomarkers associated with Alzheimer's disease shows concordance with neuropsychological and neuroimaging assessment[J]. Mol Psychiatry, 2015, 20(10): 1188-1196.
[39]
Burgos K, Malenica I, Metpally R, et al. Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer's and Parkinson's diseases correlate with disease status and features of pathology[J]. PLoS One, 2014, 9(5): e94839.
[40]
Pereira PA, Tomas JF, Queiroz JA, et al. Recombinant pre-miR-29b for Alzheimer s disease therapeutics[J]. Sci Rep, 2016, 6: 19946.
[41]
Liu Z, Wang C, Wang X, et al. Therapeutic effects of transplantation of as-mir-937-expressing mesenchymal stem cells in murine model of Alzheimer's disease[J]. Cell Physiol Biochem, 2015, 37(1): 321-330.
[42]
Song J, Lee JE. miR-155 is involved in Alzheimer's disease by regulating T lymphocyte function[J]. Front Aging Neurosci, 2015, 7: 61.
[1] 闫文, 谢兴文, 顾玉彪, 雷宁波, 马成, 于文霞, 高亚雄, 张磊. 微小RNA与全膝关节置换术后深静脉血栓的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 842-846.
[2] 赵之栋, 李众利. 骨关节炎早期诊治的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 689-693.
[3] 贺雨, 王玉娟, 高蓉, 李晗, 胡长英, 杨俊玲. 新型生物标志物可溶性髓样细胞触发受体-1在重症肺炎早期诊断中的应用价值[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(05): 307-312.
[4] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[5] 李智铭, 郭晨明, 庄晓晨, 候雪琴, 高军喜. 早期乳腺癌超声造影定性及定量指标的对比研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 639-643.
[6] 顾睿祈, 方洪生, 蔡国响. 循环肿瘤DNA检测在结直肠癌诊治中的应用与进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 453-459.
[7] 任涛涛, 乔晞. 急性肾损伤早期生物标志物的研究进展[J]. 中华肾病研究电子杂志, 2023, 12(01): 32-38.
[8] 郭翃江, 符雪彩, 朱妍妍, 严之红, 王丽娜, 纪红. 基于影响因素的老年阿尔茨海默病认知功能障碍预测模型构建及电子化认知康复训练的应用价值[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 156-161.
[9] 郑薏, 彭雯雯, 钟月丽. MicroRNA-34a调控电针对缺血再灌注损伤大鼠反应性星形胶质细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 135-141.
[10] 冯佳佳, 刘丹, 张广炜, 金丽霞. microRNA与脑动脉粥样硬化斑块破裂的研究新进展[J]. 中华临床医师杂志(电子版), 2022, 16(06): 601-604.
[11] 刘倩, 李鑫, 刘欣, 苑金香. 铁死亡在阿尔茨海默病发病机制中的研究进展[J]. 中华诊断学电子杂志, 2022, 10(03): 211-215.
[12] 刘天姿, 王宝军. Toll样受体4在阿尔茨海默病中的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 404-409.
[13] 夏禹, 刘寒, 朱瑞. 阿尔茨海默病及相关认知障碍疾病与早老素2基因相关性的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(03): 290-293.
[14] 宋蕾, 吴寒, 侯双兴, 楼菁菁, 刘兴党. 关于阿尔茨海默病中视网膜和视神经及相关物质的研究进展[J]. 中华脑血管病杂志(电子版), 2022, 16(05): 351-355.
[15] 马晓瑭, 李婵娣, 李嘉辉, 许小冰. 高表达microRNA-17的内皮祖细胞外泌体对糖尿病缺血性脑卒中的治疗作用[J]. 中华脑血管病杂志(电子版), 2022, 16(04): 263-274.
阅读次数
全文


摘要