切换至 "中华医学电子期刊资源库"

中华老年病研究电子杂志 ›› 2016, Vol. 03 ›› Issue (01) : 26 -29. doi: 10.3877/cma.j.issn.2095-8757.2016.01.006

所属专题: 文献

综述

MicroRNA检测对阿尔茨海默病早期诊断作用的研究进展
岳影星1, 陈莎莎1, 暴一众1, 毛根祥1, 王国付1,(), 严静1,()   
  1. 1. 310013 杭州,浙江医院;浙江省老年医学研究所;浙江省老年医学重点实验室
  • 收稿日期:2016-01-17 出版日期:2016-02-28
  • 通信作者: 王国付, 严静

Circulating microRNA as biomarker in patients with Alzheimer's disease

Yingxing Yue1, Shasha Chen1, Yizhong Bao1, Genxiang Mao1, Guofu Wang1(), Jing Yan1()   

  1. 1. Zhejiang Hospital, Zhejiang Institute of Geriatric Medicine, Key Laboratory of Geriatric Medicine of Zhejiang Province, Hangzhou 310013, China
  • Received:2016-01-17 Published:2016-02-28
  • Corresponding author: Guofu Wang, Jing Yan
引用本文:

岳影星, 陈莎莎, 暴一众, 毛根祥, 王国付, 严静. MicroRNA检测对阿尔茨海默病早期诊断作用的研究进展[J/OL]. 中华老年病研究电子杂志, 2016, 03(01): 26-29.

Yingxing Yue, Shasha Chen, Yizhong Bao, Genxiang Mao, Guofu Wang, Jing Yan. Circulating microRNA as biomarker in patients with Alzheimer's disease[J/OL]. Chinese Journal of Geriatrics Research(Electronic Edition), 2016, 03(01): 26-29.

阿尔茨海默病(Alzheimer's disease,AD)是临床上常见的慢性神经退行性疾病,可引起语言、行为等认知障碍,截止目前其发病机制仍不十分清楚。microRNA(miRNA)作为AD新型的生物标志物,是近年的研究热点。目前的研究显示,miR-125b、miR-223、miR-342-3p、miR-34c、miR-384等可能是潜在的AD诊断标志物,而且多种miRNA的联合检测也可作为AD诊断标志物,但目前尚无多种miRNA联合检测与单个miRNA检测效果的比较研究。本文旨在对miRNA检测对AD早期诊断作用的研究进行综述。

Alzheimer's disease (AD) is a complicated progressive neurodegenerative diseaseleading to dementia including language and behavior, and its pathogenesis is still unknown. MicroRNA(miRNA)are recently focused on as novel biomarkers for AD patients. 16 eligible studies of circulating miRNA in AD detection were identified through PubMed, suggested that circulating miRNA (miR-125b,miR-223,miR-342-3p,miR-34c and miR-384,et al) may be potential, none-invasive and novel biomarkers of AD. Furthermore, the combination of some miRNA are also applied for AD diagnosis, but no studies report the comparision between single miRNA and miRNA signature for AD detection.

[1]
Brookmeyer R, Johnson E, Ziegler-Graham K, et al. Forecasting the global burden of Alzheimer's disease[J].Alzheimers Dement, 2007, 3(3): 186-191.
[2]
Nussbaum RL, Ellis CE. Alzheimer's disease and Parkinson's disease[J]. N Engl J Med, 2003, 348(14): 1356-1364.
[3]
Alzheimer's Association. 2012 Alzheimer's disease facts and figures[J]. Alzheimers Dement, 2012, 8(2): 131-168.
[4]
Ferri CP, Prince M, Brayne C, et al. Global prevalence of dementia: a Delphi consensus study[J]. Lancet, 2005, 366(9503): 2112-2117.
[5]
Campos C, Rocha NB, Vieira RT, et al. Treatment of cognitive deficits in Alzheimer's disease: a psychopharmacological review[J]. Psychiatr Danub, 2016, 28(1): 2-12.
[6]
Andrieu S, Coley N, Lovestone S, et al. Prevention of sporadic Alzheimer's disease: lessons learned from clinical trials and future directions[J]. Lancet Neurol, 2015, 14(9): 926-944.
[7]
Kang JH, Korecka M, Figurski MJ, et al. The Alzheimer's disease neuroimaging initiative 2 biomarker core: a review of progress and plans[J]. Alzheimers Dement, 2015, 11(7): 772-791.
[8]
Yang JS, Lai EC. Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants[J]. Mol Cell, 2011, 43(6): 892-903.
[9]
Treiber T, Treiber N, Meister G. Regulation of microRNA biogenesis and function[J]. Thromb Haemost, 2012, 107(4): 605-610.
[10]
Del VV, Denti MA. MicroRNA and lung cancer[J]. Adv Exp Med Biol, 2015, 889: 153-177.
[11]
Samanta S, Balasubramanian S, Rajasingh S, et al. MicroRNA: a new therapeutic strategy for cardiovascular diseases[J]. Trends Cardiovasc Med, 2016, pii: S1050-1738(16)00048-7[Epub ahead of print].
[12]
Hill JM, Lukiw WJ. microRNA (miRNA)-mediated pathogenetic signaling in Alzheimer's disease (AD) [J]. Neurochem Res, 2016, 41(1-2): 96-100.
[13]
Ambros V. The functions of animal microRNAs[J]. Nature, 2004, 431(7006): 350-355.
[14]
Bartel DP. MicroRNAs: target recognition and regulatory functions[J]. Cell, 2009, 136(2): 215-233.
[15]
Guo H, Ingolia NT, Weissman JS, et al. Mammalian microRNAs predominantly act to decrease target mRNA levels[J]. Nature, 2010, 466(7308): 835-840.
[16]
Shukla GC, Singh J, Barik S. MicroRNAs: processing, maturation, target recognition and regulatory functions[J]. Mol Cell Pharmacol, 2011, 3(3): 83-92.
[17]
Cogswell JP, Ward J, Taylor IA, et al. Identification of miRNA changes in Alzheimer's disease brain and CSF yields putative biomarkers and insights into disease pathways[J]. J Alzheimers Dis, 2008, 14(1): 27-41.
[18]
Garza-Manero S, Arias C, Bermudez-Rattoni F, et al. Identification of age-and disease-related alterations in circulating miRNAs in a mouse model of Alzheimer's disease[J]. Front Cell Neurosci, 2015, 9: 53.
[19]
Luo H, Wu Q, Ye X, et al. Genome-wide analysis of miRNA signature in the APPswe/PS1DeltaE9 mouse model of alzheimer's disease[J]. PLoS One, 2014, 9(8): e101725.
[20]
Liu QY, Chang MN, Lei JX, et al. Identification of microRNAs involved in Alzheimer's progression using a rabbit model of the disease[J]. Am J Neurodegener Dis, 2014, 3(1): 33-44.
[21]
van Harten AC, Mulders J, Scheltens P, et al. Differential expression of microRNA in cerebrospinal fluid as a potential novel biomarker for Alzheimer's disease[J]. J Alzheimers Dis, 2015, 47(1): 243-252.
[22]
Denk J, Boelmans K, Siegismund C, et al. MicroRNA profiling of CSF reveals potential biomarkers to detect Alzheimer's disease[J]. PLoS One, 2015, 10(5): e0126423.
[23]
Muller M, Jakel L, Bruinsma IB, et al. MicroRNA-29a is a candidate biomarker for Alzheimer's disease in cell-free cerebrospinal fluid[J]. Mol Neurobiol, 2015[Epub ahead of print].
[24]
Tan L, Yu JT, Liu QY, et al. Circulating miR-125b as a biomarker of Alzheimer's disease[J]. J Neurol Sci, 2014, 336(1-2): 52-56.
[25]
Galimberti D, Villa C, Fenoglio C, et al. Circulating miRNAs as potential biomarkers in Alzheimer's disease[J]. J Alzheimers Dis, 2014, 42(4): 1261-1267.
[26]
Tan L, Yu JT, Tan MS, et al. Genome-wide serum microRNA expression profiling identifies serum biomarkers for Alzheimer's disease[J]. J Alzheimers Dis, 2014, 40(4): 1017-1027.
[27]
Sorensen SS, Nygaard AB, Christensen T. miRNA expression profiles in cerebrospinal fluid and blood of patients with Alzheimer's disease and other types of dementia——an exploratory study[J]. Transl Neurodegener, 2015[Epub ahead of print].
[28]
Bhatnagar S, Chertkow H, Schipper HM, et al. Increased microRNA-34c abundance in Alzheimer's disease circulating blood plasma[J]. Front Mol Neurosci, 2014, 7: 2.
[29]
Liu CG, Wang JL, Li L, Wang PC. MicroRNA-384 regulates both amyloid precursor protein and beta-secretase expression and is a potential biomarker for Alzheimer's disease[J]. Int J Mol Med, 2014, 34(1): 160-166.
[30]
Lugli G, Cohen AM, Bennett DA, et al. Plasma Exosomal miRNAs in Persons with and without Alzheimer disease: altered expression and prospects for biomarkers[J]. PLoS One, 2015, 10(10): e0139233.
[31]
Ren RJ, Zhang YF, Dammer EB, et al. Peripheral blood microrna expression profiles in Alzheimer's disease: screening, validation, association with clinical phenotype and implications for molecular mechanism[J]. Mol Neurobiol, 2015.[Epub ahead of print]
[32]
Zhu Y, Li C, Sun A, et al. Quantification of microRNA-210 in the cerebrospinal fluid and serum: implications for Alzheimer's disease[J]. Exp Ther Med, 2015, 9(3): 1013-1017.
[33]
Jia LH, Liu YN. Downregulated serum miR-223 servers as biomarker in Alzheimer's disease[J]. Cell Biochem Funct, 2016.[Epub ahead of print]
[34]
Dong H, Li J, Huang L, et al. Serum microRNA profiles serve as novel viomarkers for the diagnosis of Alzheimer's disease[J]. Dis Markers, 2015, 2015: 625659.
[35]
Geekiyanage H, Jicha GA, Nelson PT, et al. Blood serum miRNA: non-invasive biomarkers for Alzheimer's disease[J]. Exp Neurol, 2012, 235(2): 491-496.
[36]
Satoh J, Kino Y, Niida S. MicroRNA-Seq data analysis pipeline to identify blood biomarkers for Alzheimer's disease from public data[J]. Biomark Insights, 2015, 10: 21-31.
[37]
Wu HZ, Ong KL, Seeher K, et al. Circulating microRNAs as biomarkers of Alzheimer's disease: a systematic review[J]. J Alzheimers Dis, 2015, 49(3): 755-766.
[38]
Cheng L, Doecke JD, Sharples RA, et al. Prognostic serum miRNA biomarkers associated with Alzheimer's disease shows concordance with neuropsychological and neuroimaging assessment[J]. Mol Psychiatry, 2015, 20(10): 1188-1196.
[39]
Burgos K, Malenica I, Metpally R, et al. Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer's and Parkinson's diseases correlate with disease status and features of pathology[J]. PLoS One, 2014, 9(5): e94839.
[40]
Pereira PA, Tomas JF, Queiroz JA, et al. Recombinant pre-miR-29b for Alzheimer s disease therapeutics[J]. Sci Rep, 2016, 6: 19946.
[41]
Liu Z, Wang C, Wang X, et al. Therapeutic effects of transplantation of as-mir-937-expressing mesenchymal stem cells in murine model of Alzheimer's disease[J]. Cell Physiol Biochem, 2015, 37(1): 321-330.
[42]
Song J, Lee JE. miR-155 is involved in Alzheimer's disease by regulating T lymphocyte function[J]. Front Aging Neurosci, 2015, 7: 61.
[1] 何淳诺, 田志敏, 李焕玺, 吴昊越, 庄凯鹏, 周胜虎, 张浩强. 小儿发育性髋关节发育不良诊治的研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(04): 497-504.
[2] 钟佩芝, 杜宇. 龋病诊断方法的研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(02): 73-79.
[3] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
[4] 杜彦斌, 黄涛, 寇天阔, 石英. 双镜联合根治术与腹腔镜根治术在早期结肠癌患者中的应用效果[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(03): 275-278.
[5] 赵小欢, 尚志英, 段文超, 张晓燕, 孙东强. 无创通气治疗COPD 并发呼吸衰竭不同预后患者外周血MicroRNA及炎性因子水平分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 777-780.
[6] 赵静, 范晔, 游雅婷, 陈慧, 王静, 张静. 虚拟支气管镜导航联合径向超声支气管镜在周围型肺癌中的诊断意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 524-528.
[7] 王娟, 刘晔, 熊威, 蒋财磊, 贺燕, 叶青松. 间充质干细胞缓解阿尔茨海默病氧化应激的新思路[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 93-106.
[8] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[9] 杨森, 阙玉梅, 丁莉, 王艺瑾, 侯庆宇. Hcy和AD7c-NTP在阿尔茨海默病诊断中的临床应用[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 208-212.
[10] 李苒, 姜宇航, 陈泽浩, 何家恺, 闫珊珊, 鄢锦荣, 贾宝辉. 电针治疗阿尔茨海默病患者的先导性随机对照试验[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 218-224.
[11] 王江波, 尹一鸣, 张冠群. 外周血生物标志物在阿尔茨海默病早期诊断中的价值[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 244-249.
[12] 鲁悦, 李伟, 庄宗, 王娟, 赵鹏来, 杭春华. 脑出血继发吉兰-巴雷综合征二例报道并文献复习[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(02): 120-123.
[13] 于伟伟, 张国高, 吴军, 胡俊, 黄一宁, 徐晶. 线粒体相关内质网膜相关线粒体功能障碍在阿尔茨海默病中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(02): 223-230.
[14] 刘霖, 张文欢, 宋雅茹, 姜云璐. Apelin-13 在阿尔茨海默病中的神经保护作用机制研究进展[J/OL]. 中华诊断学电子杂志, 2024, 12(04): 276-280.
[15] 欧阳川, 朱巧珍, 欧阳林. 腰椎间盘退变的生物代谢特征及评价技术研究进展[J/OL]. 中华诊断学电子杂志, 2024, 12(03): 206-211.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?