[1] |
Delbeuck X, Van der Linden M, Collette F. Alzheimer’s disease as a disconnection syndrome[J]? Neuropsychol Rev, 2003, 13(2): 79-92.
|
[2] |
Wang K, Liang M, Wang L, et al. Altered functional connectivity in early Alzheimer’s disease: a resting-state fMRI study[J]. Hum Brain Mapp, 2007, 28(10): 967-978.
|
[3] |
Zhong Y, Huang L, Cai S, et al. Altered effective connectivity patterns of the default mode network in Alzheimer’s disease: an fMRI study[J]. Neurosci lett, 2014, 578: 171-175.
|
[4] |
Raichle ME, MacLeod AM, Snyder AZ, et al. A default mode of brain function[J]. Proc Natl Acad Sci USA, 2001, 98(2):676-682.
|
[5] |
Gusnard DA, Raichle ME. Searching for a baseline: functional imaging and the resting human brain.Nature reviews[J]. Nat Rev Neurosci, 2001, 2(10): 685-694.
|
[6] |
Greicius MD, Krasnow B, Reiss AL, et al. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis[J]. Proc Natl Acad Sci U S A, 2003, 100(1): 253-258.
|
[7] |
Ries ML, Schmitz TW, Kawahara TN, et al. Task-dependent posterior cingulate activation in mild cognitive impairment[J]. Neuroimage, 2006, 29(2): 485-492.
|
[8] |
Braak H,Braak E. Neuropathological stageing of Alzheimer-related changes[J]. Acta neuropathol, 1991, 82(4): 239-259.
|
[9] |
Wang H, Golob E, Bert A, et al. Alterations in regional brain volume and individual MRI-guided perfusion in normal control, stable mild cognitive impairment, and MCI-AD converter[J]. J Geriatr Psychiatry Neurol, 2009, 22(1): 35-45.
|
[10] |
Greicius MD, Srivastava G, Reiss AL, et al. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI[J]. Proc Natl Acad Sci USA, 2004, 101(13): 4637-4642.
|
[11] |
Wang L, Zang Y, He Y, et al. Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: evidence from resting state fMRI[J]. Neuroimage, 2006, 31(2): 496-504.
|
[12] |
Wierenga CE, Bondi MW. Use of functional magnetic resonance imaging in the early identification of Alzheimer’s disease[J]. Neuropsychol Rev, 2007, 17(2): 127-143.
|
[13] |
Miao X, Wu X, Li R, et al. Altered connectivity pattern of hubs in default-mode network with Alzheimer’s disease: an Granger causality modeling approach[J]. PLoS One, 2011, 6(10):e25546.
|
[14] |
Kaminski M, Ding M, Truccolo WA, et al. Evaluating causal relations in neural systems: granger causality, directed transfer function and statistical assessment of significance[J]. Biol Cybern, 2001, 85(2): 145-157.
|
[15] |
Cabeza R. Hemispheric asymmetry reduction in older adults: the HAROLD model[J]. Psychol Aging, 2002, 17(1):85-100.
|
[16] |
Critchley HD, Rolls ET. Olfactory neuronal responses in the primate orbitofrontal cortex: analysis in an olfactory discrimination task[J]. J Neurophysiol, 1996, 75(4): 1659-1672.
|
[17] |
Prvulovic D, Hubl D, Sack AT, et al. Functional imaging of visuospatial processing in Alzheimer’s disease[J]. Neuroimage, 2002, 17(3): 1403-1414.
|
[18] |
Zhang HY, Wang SJ, Xing J, et al. Detection of PCC functional connectivity characteristics in resting-state fMRI in mild Alzheimer’s disease[J]. Behav Brain Res, 2009, 197(1): 103-108.
|
[19] |
Braak H, Braak E. Staging of Alzheimer-related cortical destruction[J]. Int Psychogeriatr, 1997, 9(Suppl 1): 257-261.
|
[20] |
Reiman EM, Caselli RJ, Chen K, et al. Declining brain activity in cognitively normal apolipoprotein E epsilon 4 heterozygotes: a foundation for using positron emission tomography to efficiently test treatments to prevent Alzheimer’s disease[J].Proc Natl Acad Sci USA, 2001, 98(6): 3334-3339.
|