切换至 "中华医学电子期刊资源库"

中华老年病研究电子杂志 ›› 2014, Vol. 01 ›› Issue (01) : 19 -23. doi: 10.3877/cma.j.issn.2095-8757.2014.01.006

所属专题: 文献

基础研究

雌激素对心肌肥厚小鼠T淋巴细胞免疫调节作用的影响
刘正霞1, 蔡诗昆1, 周萍1, 刘莹1, 鲁翔1,()   
  1. 1. 210029 南京医科大学第二附属医院老年医学科
  • 收稿日期:2014-11-09 出版日期:2014-11-30
  • 通信作者: 鲁翔

The effect of estrogen on T lymphocyte immunoregulation in mice with hypertrophic cardiomyopathy

Zhengxia Liu1, Shikun Cai1, Ping Zhou1, Ying Liu1, Xiang Lu1,()   

  1. 1. Department of Geriatrics, the Second Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
  • Received:2014-11-09 Published:2014-11-30
  • Corresponding author: Xiang Lu
  • About author:
    Correspanding author: Lu Xiang, Email:
引用本文:

刘正霞, 蔡诗昆, 周萍, 刘莹, 鲁翔. 雌激素对心肌肥厚小鼠T淋巴细胞免疫调节作用的影响[J]. 中华老年病研究电子杂志, 2014, 01(01): 19-23.

Zhengxia Liu, Shikun Cai, Ping Zhou, Ying Liu, Xiang Lu. The effect of estrogen on T lymphocyte immunoregulation in mice with hypertrophic cardiomyopathy[J]. Chinese Journal of Geriatrics Research(Electronic Edition), 2014, 01(01): 19-23.

目的

探讨雌激素对血管紧张素Ⅱ(AngⅡ)诱导的高血压心肌肥厚小鼠T淋巴细胞免疫调节作用的影响。

方法

取8~10周龄雌性C57BL/6小鼠31只,采用随机数字表法分为4组:假手术组(Sham组,8只),假手术+AngⅡ处理组(Sham+AngⅡ组,7只),卵巢切除组(Ovx组,8只)、卵巢切除+AngⅡ处理组(Ovx+AngⅡ组,8只)。AngⅡ给予方法:采用微量缓释泵植入小鼠颈背部皮下进行灌注(1 000 ng·kg-1·d-1,持续4周),测定给药前及给药后第2,3,4,5周动脉血压,给药结束后行经胸廓超声心动图检测射血分数(EF)、左心室缩短分数(FS)、左心室舒张/收缩末期室间隔厚度(IVSd/IVSs)、左心室舒张/收缩末期容积(LV VOLd/LV VOLs)、左心室舒张/收缩末期后壁厚度(LVPWTd/LVPWTs)。流式细胞仪检测外周血CD3,CD4,CD8的百分数结果。多组间血压比较采用方差分析,两组间心脏超声检测指标及T淋巴细胞亚群的比较采用t检验。

结果

建模后各时点,Sham+AngⅡ组收缩压较Sham组显著升高、Ovx+AngⅡ组收缩压较Ovx组显著升高,差异均有统计学意义(F=15.23,P<0.01)。给予AngⅡ后,IVSs、IVSd、LVPWTs、LVPWTd均显著增高,差异均有统计学意义(t=3.81、7.74、3.87、7.73,8.64、6.01、4.93、8.59;P<0.05或0.01);与Sham+AngⅡ组比较,Ovx+AngⅡ组IVSs、IVSd、LVPWTs均显著增高,差异有统计学意义(t=2.00、2.64、1.71,均P<0.01)。Sham+AngⅡ组及Ovx+AngⅡ组较之相对应的Sham组及Ovx组,CD3比例升高、CD4比例降低、CD8比例升高、CD4/CD8比例降低,差异均有统计学意义(t=6.24、-4.85、7.70、-10.62,2.13、-11.04、11.11、-24.24;P<0.05);而且与Sham+AngⅡ组比较,Ovx+AngⅡ组总T细胞比例降低、CD4比例升高、CD8比例降低、CD4/CD8比例升高,差异均有统计学意义(t=-2.78、3.37、-3.42、3.16,均P<0.05或0.01)。

结论

雌激素对于高血压心肌肥厚过程中的T淋巴细胞免疫具有重要的调节作用。

Objective

To investigate the effect of the estrogenfor on T lymphocyte immunoregulation in mice with hypertrophic cardiomyopathy caused by AngⅡ.

Methods

Thirty one female C57BL/6 mice between 8~10 weeks were randomly divided into 4 groups: Sham (n=8), Sham+ AngⅡ (n=7), Ovx (n=8), Ovx+ AngⅡ (n=8). Osmotic mini-pumps containing AngⅡ (1000 ng·kg-1·d-1) were implanted subcutaneously in experimental mice. Thirty days after mini-pump implantation, blood pressure and heart rate were measured noninvasively in conscious animals by the tail-cuff method. Transthoracic echocardiography was performed under light sedation with 1.0% isoflurane. Ejection fraction(EF), fractional shortening(FS), diastolic/systolic ventricular septal (IVSd/IVSs) and posterior wall thickness (LVPWTd/LVPWTs), left ventricular diastolic and systolic volumes (LV VOLd/LV VOLs) were measured before and at the second, third, fourth, fifth week after the treatment. The immunologic markers of T cells CD3+ , CD4+ , CD8+ were analyzed by multicolor flow cytometry.

Results

The hypertension and hypertrophic cardiomyopathy model was set up in the mice by infusion of AngⅡ (1000 ng/kg per day). Each time point after modeling, Sham+ AngⅡ group showed significantly higher systolic blood pressure than in the sham group, Ovx+ AngⅡ group increased in systolic blood pressure compared with Ovx group. There were significant difference (F=15.23, P<0.01). Compared with the Sham group, Sham+ AngⅡ group indicated significantly increased IVSs, IVSd, LVPWs, LVPWd (t=3.81、7.74、3.87、7.73, P<0.01); Compared with Ovx, Ovx+ AngⅡ group showed significantly increased IVSs, IVSd, LVPWs, LVPWd and significantly reduced LV VOLs, LV VOLd (t=8.64、6.01、4.93、8.59、-2.16、-2.58, P<0.05 or 0.01). Compared to Sham and Ovx group, sham+ AngⅡ and Ovx+ AngⅡ group had the higher percentage of T cell ratios with reduced CD4+ and increased CD8+ cells (t=6.24、-4.85、7.70、-10.62、2.13、-11.04、11.11、-24.24, P<0.05 or 0.01); But compared with the sham+ Ang group, Ovx+ Ang group percentage of total T cells decrease with higher CD4+ ratio and lower CD8+ proportions (t=-2.78、3.37、-3.42、3.16, P<0.05 or 0.01).

Conclusion

Our studies shows that estrogen plays an important role in T cellimmunoregulationfor in AngⅡ-induced hypertrophic cardiomyopathy.

图1 各组小鼠收缩压测量结果的比较
表1 4组不同处理方法的小鼠心脏超声检测情况的比较(±s)
表2 4组小鼠T淋巴细胞亚群检测结果比较(±s)
图2 4组小鼠T淋巴细胞亚群检测流式细胞分析图
[1]
Harrison DG. The immune system in hypertension[J]. Trans Am Clin Climatol Assoc,2014,125:130-138.
[2]
Okin PM, Devereux RB, Jern S, et al. Regression of electrocardiographic left ventricular hypertrophy during antihypertensive treatment and the prediction of major cardiovascular events[J]. JAMA,2004,292(19):2343-2349.
[3]
Heymans S. Inflammation and cardiac remodeling during viral myocarditis[J]. Ernst Schering Res Found Workshop,2006,55:197-218.
[4]
Sasamura H, Azegami T, Itoh H. Current status of vaccination therapy for hypertension[J]. Nihon Rinsho, 2012,70(9):1627-1632.
[5]
Zeymer U, Dechend R, Deeg E, et al. Aliskiren for the treatment of essential hypertension under real-life practice conditions: design and baseline data of the prospective 3A registry[J]. Int J Clin Pract,2012,66(3):251-261.
[6]
Hoch NE, Guzik TJ, Chen W, et al. Regulation of T-cell function by endogenously produced angiotensin Ⅱ[J]. Am J Physiol Regul Integr Comp Physiol,2009, 296(2):R208-216.
[7]
Eckel RH, Wassef M, Chait A, et al. Prevention conference Ⅵ:diabetes and cardiovascular disease: Writing Group Ⅱ:pathogenesis of atherosclerosis in diabetes[J]. Circulation,2002,105(18):e138-143.
[8]
Kawai C. From myocarditis to cardiomyopathy: mechanisms of inflammation and cell death: learning from the past for the future[J]. Circulation,1999,99(8):1091-1100.
[9]
Dzielak DJ. The immune system and hypertension[J]. Hypertension,1992,19(1 Suppl):136-144.
[10]
Rosskopf D, Hartung K, Hense J, et al. Enhanced immunoglobulin formation of immortalized B cells from hypertensive patients[J]. Hypertension,1995,26(3):432-435.
[11]
Harrison DG, Vinh A, Lob H, et al. Role of the adaptive immune system in hypertension[J].Curr Opin Pharmacol,2010,10(2):203-207.
[12]
Collett JA, Hart AK, Patterson E, et al. Renal angiotensin Ⅱ type 1 receptor expression and associated hypertension in rats with minimal SHR nuclear genome[J]. Physiol Rep,2013,1(5):e00104.
[13]
Blagonravov ML, Frolov VA, Azova MM, et al. Characteristics of circadian rhythm of blood pressure during long-term hypertension development in SHR rats[J]. Bull Exp Biol Med,2013,155(5):612-614.
[14]
Shao J, Nangaku M, Miyata T, et al. Imbalance of T-cell subsets in angiotensin II-infused hypertensive rats with kidney injury[J]. Hypertension,2003,42(1):31-38.
[15]
Priyanka HP, Krishnan HC, Singh RV, et al. Estrogen modulates in vitro T cell responses in a concentration-and receptor-dependent manner: effects on intracellular molecular targets and antioxidant enzymes[J]. Mol Immunol,2013,56(4):328-339.
[16]
Aikawa M, Libby P. The vulnerable atherosclerotic plaque: pathogenesis and therapeutic approach[J]. Cardiovasc Pathol,2004,13(3):125-138.
[17]
Heymans S, Pauschinger M, De Palma A, et al. Inhibition of urokinase-type plasminogen activator or matrix metalloproteinases prevents cardiac injury and dysfunction during viral myocarditis[J]. Circulation,2006,114(6):565-573.
[18]
Li YY, Feng YQ, Kadokami T, et al. Myocardial extracellular matrix remodeling in transgenic mice overexpressing tumor necrosis factor alpha can be modulated by anti-tumor necrosis factor alpha therapy[J]. Proc Natl Acad Sci USA,2000,97(23):12746-12751.
[19]
Ishibashi M, Hiasa K, Zhao Q, et al. Critical role of monocyte chemoattractant protein-1 receptor CCR2 on monocytes in hypertension-induced vascular inflammation and remodeling[J]. Circ Res,2004,94(9):1203-1210.
[20]
Mendelsohn ME. Protective effects of estrogen on the cardiovascular system[J]. Am J Cardiol,2002,89(12A):12E-17E;discussion 17E-18E.
[21]
Mendelsohn ME, Karas RH. The protective effects of estrogen on the cardiovascular system[J]. N Engl J Med,1999,340(23):1801-1811.
[22]
Bourassa PA, Milos PM, Gaynor BJ, et al. Estrogen reduces atherosclerotic lesion development in apolipoprotein E-deficient mice[J]. Proc Natl Acad Sci USA,1996,93(19):10022-10027.
[23]
Arnal JF, Gourdy P, Garmy-Susini B, et al. Usefulness of experimental models to understand the vascular effects of estrogens[J]. Med Sci (Paris),2003,19(12):1226-1232.
[24]
Arnal JF, Scarabin PY, Trémollières F, et al. Estrogens in vascular biology and disease: where do we stand today[J]? Curr Opin Lipidol,2007,18(5):554-560.
[1] 靳茜雅, 黄晓松, 谭诚, 蒋琴, 侯昉, 李瑶悦, 徐冰, 贾红慧, 刘文英. 产前他克莫司治疗对先天性膈疝大鼠病理模型肺血管重构的影响[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 428-436.
[2] 李建美, 邓静娟, 杨倩. 两种术式联合治疗肝癌合并肝硬化门静脉高压的安全性及随访评价[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 41-44.
[3] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[4] 张其坤, 商福超, 李琪, 栗光明, 王孟龙. 联合脾切除对肝癌合并门静脉高压症患者根治性切除术后的生存获益分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 613-618.
[5] 赫嵘, 贾哲, 张珂, 李代京, 张萌, 蒋力. 基于PSM分析腹腔镜肝切除联合Hassab术治疗合并门静脉高压症肝癌疗效[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 376-383.
[6] 许语阳, 吕云福, 王葆春. 乙肝后肝硬化门静脉高压症脾肿大外科治疗进展[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 469-473.
[7] 杨林青, 任松, 纪泛扑, 张健, 蒋安, 张丽, 安鹏, 王林, 李宗芳. 揿针疗法对门静脉高压症脾切除断流术后胃肠功能的调节作用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 322-326.
[8] 李青霖, 宋仁杰, 周飞虎. 一种重型劳力性热射病相关急性肾损伤小鼠模型的建立与探讨[J]. 中华肾病研究电子杂志, 2023, 12(05): 265-270.
[9] 任国华, 杜晓晓, 洪善玲, 邵帅. 妊娠期高血压并发急性肾损伤患者血清白细胞介素-22、硫化氢及护骨素水平的变化与意义[J]. 中华肾病研究电子杂志, 2023, 12(03): 150-155.
[10] 李晓晨, 乔晞. 血液透析患者的血压靶目标值研究进展[J]. 中华肾病研究电子杂志, 2023, 12(03): 168-171.
[11] 朱泽超, 杨新宇, 李侑埕, 潘鹏宇, 梁国标. 染料木黄酮通过SIRT1/p53信号通路对蛛网膜下腔出血后早期脑损伤的作用[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 261-269.
[12] 运陌, 李茂芳, 王浩, 刘东远. 微创穿刺引流联合吡拉西坦、乌拉地尔治疗基底节区高血压性脑出血的临床研究[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 278-285.
[13] 刘政委, 仪立志, 尹夕龙, 孔文龙, 纠智松, 张文源. 锥颅血肿外引流与神经内镜手术治疗老年基底节区高血压性脑出血的疗效分析[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 299-303.
[14] 许秀兰, 朱建建. 血压变异性与伴H型高血压的急性脑梗死患者预后不良的临床关系分析[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 199-204.
[15] 王淑友, 宋晓晶, 贾术永, 王广军, 张维波. 肝脏去唾液酸糖蛋白受体靶向活体荧光成像评估酒精性肝损伤肝脏功能的研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 443-446.
阅读次数
全文


摘要